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Teach Yourself TCP/IP in 14 Days, Second 
Edition

The second edition of Teach Yourself TCP/IP in 14 Days expands on the very popular first 
edition, bringing the information up-to-date and adding new topics to complete the 
coverage of TCP/IP. The book has been reorganized to make reading and learning easier, 
as well as to provide a more logical approach to the subject. 

New material in this edition deals with installing, configuring, and testing a TCP/IP 
network of servers and clients. You will see how to easily set up UNIX, Linux, and 
Windows NT servers for all popular TCP/IP services, including Telnet, FTP, DNS, NIS, 
and NFS. On the client side, you will see how to set up DOS, Windows, Windows 95, and 
WinSock to interact with a server. Examples and tips throughout these sections make 
the process easy and clear. 

Also added in this edition of Teach Yourself TCP/IP in 14 Days are new sections on DNS, 
NFS, and NIS. These network services have become popular with the growth of large 
TCP/IP networks, so we show you how to configure and use them all. A new section on 
the latest version of IP updates the treatment of the base protocols to 1996 standards. 

Tim Parker 
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Comments Department 
Sams Publishing 
201 W. 103rd Street 
Indianapolis, IN 46290 
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Topics Covered in Detail in this Edition

●     Standards and terminology 

●     Network architecture 

●     History of TCP/IP and the Internet 

●     IPng (IP version 6) 

●     Telnet and FTP 

●     Configuring servers and clients 

Introduction

So you've just been told you are on a TCP/IP network, you are the new TCP/IP system 
administrator, or you have to install a TCP/IP system. But you don't know very much 
about TCP/IP. That's where this book comes in. You don't need any programming skills, 
and familiarity with operating systems is assumed. Even if you've never touched a 
computer before, you should be able to follow the material. 

This book is intended for beginning through intermediate users and covers all the 
protocols involved in TCP/IP. Each protocol is examined in a fair level of detail to show 
how it works and how it interacts with the other protocols in the TCP/IP family. Along 
the way, this book shows you the basic tools required to install, configure, and maintain 
a TCP/IP network. It also shows you most of the user utilities that are available. 

Because of the complex nature of TCP/IP and the lack of a friendly user interface, 
there is a lot of information to look at. Throughout the book, the role of each protocol 
is shown separately, as is the way it works on networks of all sizes. The relationship 
with large internetworks (like the Internet) is also covered. 

Each chapter in the book adds to the complexity of the system, building on the material 
in the earlier chapters. Although some chapters seem to be unrelated to TCP/IP at first 



glance, all the material is involved in an integral manner with the TCP/IP protocol 
family. The last few chapters cover the installation and troubleshooting of a network. 

By the time you finish this book, you will understand the different components of a 
TCP/IP system, as well as the complex acronym-heavy jargon used. Following the 
examples presented, you should be able to install and configure a complete TCP/IP 
network for any operating system and hardware platform. 

The TCP/IP Protocol Family

Transport

Transmission Control Protocol (TCP): connection-based services 

User Datagram Protocol (UDP): connectionless services 

Routing

Internet Protocol (IP): handles transmission of information 

Internet Control Message Protocol (ICMP): handles status messages for IP 

Routing Information Protocol (RIP): determines routing 

Open Shortest Path First (OSPF): alternate protocol for 
determining routing 

Network Addresses

Address Resolution Protocol (ARP): determines addresses 



Domain Name System (DNS): determines addresses from machine names 

Reverse Address Resolution Protocol (RARP): - determines 
addresses 

User Services

Boot Protocol (BOOTP): starts up a network machine 

File Transfer Protocol (FTP): transfers files 

Telnet: allows remote logins 

Gateway Protocols

Exterior Gateway Protocol (EGP): transfers routing information for 
external networks 

Gateway-to-Gateway Protocol (GGP): transfers routing information 
between gateways 

Interior Gateway Protocol (IGP): transfers routing information 
for internal networks 

Others

Network File System (NFS): enables directories on one machine to be 
mounted on another 

Network Information Service (NIS): maintains user accounts across 
networks 



Remote Procedure Call (RPC): enables remote applications to communicate 

Simple Mail Transfer Protocol (SMTP): transfers electronic mail 

Simple Network Management Protocol (SNMP): sends status 
messages about the network 

    



   

■     The TCP/IP Protocol Family

The TCP/IP Protocol Family

Transport

TCP (Transmission Control Protocol) Connection-based services (Day 4) 

UDP (User Datagram Protocol) Connectionless services (Day 4) 

Routing

IP (Internet Protocol) Handles transmission of information (Day 3) 

ICMP (Internet Control Message 
Protocol) 

Handles status messages for IP (Day 3) 

RIP (Routing Information Protocol) Determines routing (Day 5) 

OSPF (Open Shortest Path First) 
Alternate protocol for determining routing 
(Day 5) 

Network Addresses

ARP (Address Resolution Protocol) Determines addresses (Day 2) 

DNS (Domain Name System) 
Determines addresses from machine names 
(Day 2 and Day 11) 

RARP (Reverse Address Resolution 
Protocol) 

Determines addresses (Day 2) 

User Services

BOOTP (Boot Protocol) Starts up a network machine (Day 11) 

FTP (File Transfer Protocol) Transfers files (Day 6) 

Telnet Enables remote logins (Day 6) 

TFTP (Trivial File Transfer Protocol) Enables remote file transfers (Day 6) 

Gateway Protocols



EGP (Exterior Gateway Protocol) 
Transfers routing information for external 
networks (Day 3 and Day 5) 

GGP (Gateway-to-Gateway Protocol) 
Transfers routing information between 
gateways (Day 3 and Day 5) 

IGP (Interior Gateway Protocol) 
Transfers routing information for internal 
networks (Day 5) 

Others

NFS (Network File System) 
Enables directories on one machine to be 
mounted on another (Day 12) 

NIS (Network Information Service) 
Maintains user accounts across networks 
(Day 12) 

NTP (Network Time Protocol) Synchronizes clocks (Day 11) 

PING (Packet Internet Groper) Checks connectivity (Day 7) 

RPC (Remote Procedure Call) 
Enables remote applications to communicate 
(Day 12) 

SNMP (Simple Network Management 
Protocol) 

Sends status messages about the network 
(Day 13) 
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— 1 — 
Open Systems, Standards, and Protocols

Today I start looking at the subject of TCP/IP by covering some background information 
you will need to put TCP/IP in perspective, and to understand why the TCP/IP protocols 
were designed the way they are. This chapter covers some important information, 
including the following: 

●     What an open system is 

●     How an open system handles networking 

●     Why standards are required 

●     How standards for protocols like TCP/IP are developed 

●     What a protocol is 

●     The OSI protocols 

You might be eager to get started with the nitty-gritty of the TCP/IP protocols, or to 
find out how to use the better-known services like FTP and Telnet. If you have a specific 
requirement to satisfy (such as how to transfer a file from one system to another), by 
all means use the Table of Contents to find the section you want. But if you want to 
really understand TCP/IP, you will need to wade through the material in this chapter. 
It's not complicated, although there are quite a few subjects to be covered. Luckily, 
none of it requires memorization; more often than not it is a matter of setting the stage 
for something else I discuss in the next week or so. So don't get too overwhelmed by this 
chapter! 

Open Systems

This is a book about a family of protocols called TCP/IP, so why bother looking at open 
systems and standards at all? Primarily because TCP/IP grew out of the need to develop 
a standardized communications procedure that would inevitably be used on a variety of 
platforms. The need for a standard, and one that was readily available to anyone 
(hence open), was vitally important to TCP/IP's success. Therefore, a little background 



helps put the design of TCP/IP into perspective. 

More importantly, open systems have become de rigueur in the current competitive 
market. The term open system is bandied around by many people as a solution for all 
problems (to be replaced occasionally by the term client/server), but neither term is 
usually properly used or understood by the people spouting them. Understanding what 
an open system really is and what it implies leads to a better awareness of TCP/IP's role 
on a network and across large internetworks like the Internet. 

In a similar vein, the use of standards ensures that a protocol such as TCP/IP is the same 
on each system. This means that your PC can talk to a minicomputer running TCP/IP 
without special translation or conversion routines. It means that an entire network of 
different hardware and operating systems can work with the same network protocols. 
Developing a standard is not a trivial process. Often a single standard involves more 
than a single document describing a software system. A standard often involves the 
interrelationship of many different protocols, as does TCP/IP. Knowing the interactions 
between TCP/IP and the other components of a communications system is important for 
proper configuration and optimization, and to ensure that all the services you need are 
available and interworking properly. 

What Is an Open System?

There are many definitions of open systems, and a single, concise definition that 
everyone is happy with is far from being accepted. For most people, an open system is best 
loosely defined as one for which the architecture is not a secret. The description of the 
architecture has been published or is readily available to anyone who wants to build 
products for a hardware or software platform. This definition of an open system applies 
equally well to hardware and software. 

When more than a single vendor begins producing products for a platform, customers 
have a choice. You don't particularly like Nocrash Software's network monitoring 
software? No problem, because FaultFree Software's product runs on the Nocrash 
hardware, and you like its fancy interface much better. You need a more colorful 
graphical front-end to your Whizbang PC than the one Whizbang provides? Download 
one from Super Software through the Internet, and it works perfectly. The primary 
idea, of course, is a move away from proprietary platforms to one that is multivendor. 

A decade ago, open systems were virtually nonexistent. Each hardware manufacturer 
had a product line, and you were practically bound to that manufacturer for all your 
software and hardware needs. Some companies took advantage of the captive market, 
charging outrageous prices or forcing unwanted configurations on their customers. The 
groundswell of resentment grew to the point that customers began forcing the issue. 



The lack of choice in software and hardware purchases is why several dedicated 
minicomputer and mainframe companies either went bankrupt or had to accept open 
system principles: their customers got fed up with relying on a single vendor. A good 
example of a company that made the adaptation is Digital Equipment Corporation (DEC). 
They moved from a proprietary operating system on their VMS minicomputers to a UNIX-
standard open operating system. By doing that, they kept their customers happy, and 
they sold more machines. That's one of the primary reasons DEC is still in business today. 

UNIX is a classic example of an open software platform. UNIX has been around for 30 
years. The source code for the UNIX operating system was made available to anyone who 
wanted it, almost from the start. UNIX's source code is well understood and easy to 
work with, the result of 30 years of development and improvement. UNIX can be ported 
to run on practically any hardware platform, eliminating all proprietary dependencies. 
The attraction of UNIX is not the operating system's features themselves but simply 
that a UNIX user can run software from other UNIX platforms, that files are 
compatible from one UNIX system to another (except for disk formats), and that a wide 
variety of vendors sell products for UNIX. 

The growth of UNIX pushed the large hardware manufacturers to the open systems 
principle, resulting in most manufacturers licensing the right to produce a UNIX version 
for their own hardware. This step let customers combine different hardware systems 
into larger networks, all running UNIX and working together. Users could move 
between machines almost transparently, ignorant of the actual hardware platform 
they were on. Open systems, originally of prime importance only to the largest 
corporations and governments, is now a key element in even the smallest company's 
computer strategy. 

Although UNIX is a copyrighted work now owned by 
X/Open, the details of the operating system have been published 
and are readily available to any developer who wants to 
produce applications or hardware that work with the operating 
system. UNIX is unique in this respect. 

The term open system networking means many things, depending on whom you ask. In its 
broadest definition, open system networking refers to a network based on a well-known 
and understood protocol (such as TCP/IP) that has its standards published and readily 
available to anyone who wants to use them. Open system networking also refers to the 
process of networking open systems (machaine-specific hardware and software) using a 
network protocol. It is easy to see why people want open systems networking, though. 
Three services are widely used and account for the highest percentage of network 
traffic: file transfer, electronic mail, and remote login. Without open systems 
networking, setting up any of these three services would be a nightmare. 



File transfers enable users to share files quickly and efficiently, without excessive 
duplication or concerns about the transport method. Network file transfers are much 
faster than an overnight courier crossing the country, and usually faster than copying 
a file on a disk and carrying it across the room. File transfer is also extremely 
convenient, which not only pleases users but also eliminates time delays while waiting 
for material. A common open system governing file transfers means that any 
incompatibilities between the two machines transferring files can be overcome easily. 

Electronic mail has mushroomed to a phenomenally large service, not just within a 
single business but worldwide. The Internet carries millions of messages from people in 
government, private industry, educational institutions, and private interests. 
Electronic mail is cheap (no paper, envelope, or stamp) and fast (around the world in 60 
seconds or so). It is also an obvious extension of the computer-based world we work in. 
Without an open mail system, you wouldn't have anywhere near the capabilities you 
now enjoy. 

Finally, remote logins enable a user who is based on one system to connect through a 
network to any other system that accepts him as a user. This can be in the next 
workgroup, the next state, or in another country. Remote logins enable users to take 
advantage of particular hardware and software in another location, as well as to run 
applications on another machine. Once again, without an open standard, this would be 
almost impossible. 

Network Architectures

To understand networking protocols, it is useful to know a little about networks. A 
quick look at the most common network architectures will help later in this book when 
you read about network operations and routing. The term network usually means a set of 
computers and peripherals (printers, modems, plotters, scanners, and so on) that are 
connected together by some medium. The connection can be direct (through a cable) or 
indirect (through a modem). The different devices on the network communicate with 
each other through a predefined set of rules (the protocol). 

The devices on a network can be in the same room or scattered through a building. They 
can be separated by many miles through the use of dedicated telephone lines, microwave, 
or a similar system. They can even be scattered around the world, again connected by a 
long-distance communications medium. The layout of the network (the actual devices 
and the manner in which they are connected to each other) is called the network 
topology. 



Usually, if the devices on a network are in a single location such as a building or a 
group of rooms, they are called a local area network, or LAN. LANs usually have all 
the devices on the network connected by a single type of network cable. If the devices 
are scattered widely, such as in different buildings or different cities, they are usually 
set up into several LANs that are joined together into a larger structure called a wide 
area network, or WAN. A WAN is composed of two or more LANs. Each LAN has its own 
network cable connecting all the devices in that LAN. The LANs are joined together by 
another connection method, often high-speed telephone lines or very fast dedicated 
network cables called backbones, which I discuss in a moment. 

One last point about WANs: they are often treated as a single entity for 
organizational purposes. For example, the ABC Software company might have branches 
in four different cities, with a LAN in each city. All four LANs are joined together by 
high-speed telephone lines. However, as far as the Internet and anyone outside the ABC 
Software company are concerned, the ABC Software WAN is a single entity. (It has a 
single domain name for the Internet. Don’t worry if you don’t known what a domain is 
at this point in time; it refers to a single entity for organizational purposes on the 
Internet, as you will see later.) 

Local Area Networks

TCP/IP works across LANs and WANs, and there are several important aspects of LAN 
and WAN topologies you should know about. You can start with LANs and look at their 
topologies. Although there are many topologies for LANs, three topologies are 
dominant: bus, ring, and hub. 

The Bus Network

The bus network is the simplest, comprising a single main communications pathway with 
each device attached to the main cable (bus) through a device called a transceiver or 
junction box. The bus is also called a backbone because it resembles a human spine with 
ribs emanating from it. From each transceiver on the bus, another cable (often very 
short) runs to the device's network adapter. An example of a bus network is shown in 
Figure 1.1. 

Figure 1.1. A schematic of a bus network showing the backbone with transceivers 
leading to network devices. 

The primary advantage of a bus network is that it allows for a high-speed bus. Another 
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advantage of the bus network is that it is usually immune to problems with any single 
network card within a device on the network. This is because the transceiver allows 
traffic through the backbone whether a device is attached to the junction box or not. 
Each end of the bus is terminated with a block of resistors or a similar electrical device 
to mark the end of the cable electrically. Each device on the pathway has a special 
identifying number, or address, that lets the device know that incoming information is 
for that device. 

A bus network is seldom a straight cable. Instead, it is usually twisted around walls 
and buildings as needed. It does have a single pathway from one end to the other, with 
each end terminated in some way (usually with a resistor). Figure 1.1 shows a logical 
representation of the network, meaning it has simplified the actual physical appearance 
of the network into a schematic with straight lines and no real scale to the 
connections. A physical representation of the network would show how it goes through 
walls, around desks, and so on. Most devices on the bus network can send or receive 
data along the bus by packaging a message with the intended recipient's address. 

A variation of the bus network topology is found in many small LANs that use Thin 
Ethernet cable (which looks like television coaxial cable) or twisted-pair cable (which 
resembles telephone cables). This type of network consists of a length of coaxial cable 
that snakes from machine to machine. Unlike the bus network in Figure 1.1, there are no 
transceivers on the bus. Instead, each device is connected into the bus directly using a T-
shaped connector on the network interface card, often using a connector called a BNC. 
The connector connects the machine to the two neighbors through two cables, one to 
each neighbor. At the ends of the network, a simple resistor is added to one side of the T-
connector to terminate the network electrically. 

A schematic of this type of network is shown in Figure 1.2. Each network device has a T-
connector attached to the network interface card, leading to its two neighbors. The 
two ends of the bus are terminated with resistors. 

Figure 1.2. A schematic of a machine-to-machine bus network. 

This machine-to-machine (also called peer-to-peer) network is not capable of sustaining 
the higher speeds of the backbone-based bus network, primarily because of the medium of 
the network cable. A backbone network can use very high-speed cables such as fiber 
optics, with smaller (and slower) cables from each transceiver to the device. A machine-
to-machine network is usually built using twisted-pair or coaxial cable because these 
cables are much cheaper and easier to work with. Until recently, machine-to-machine 
networks were limited to a throughput of about 10 Mbps (megabits per second), although 
recent developments called 100VG AnyLAN and Fast Ethernet allow 100 Mbps on this 
type of network. 

The advantage of this machine-to-machine bus network is its simplicity. Adding new 
machines to the network means installing a network card and connecting the new 
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machine into a logical place on the backbone. One major advantage of the machine-to-
machine bus network is also its cost: it is probably the lowest cost LAN topology 
available. The problem with this type of bus network is that if one machine is taken off 
the network cable, or the network interface card malfunctions, the backbone is broken 
and must be tied together again with a jumper of some sort or the network might cease 
to function properly. 

The Ring Network

A ring network topology is often drawn as its name suggests, shaped like a ring. A 
typical ring network schematic is shown in Figure 1.3. You might have heard of a token 
ring network before, which is a ring topology network. You might be disappointed to find 
no physical ring architecture in a ring network, though. 

Figure 1.3. A schematic of a ring network. 

Despite the almost automatic assumption that a ring 
network has a backbone with the ends of the cable joined to 
form a loop, there is no real cabling ring at all. The ring name 
derives from the construction of the central control unit. 

The term ring is a misnomer because ring networks don't have an unending cable like a 
bus network with the two terminators joined together. Instead, the ring refers to the 
design of the central unit that handles the network's message passing. In a token ring 
network, the central control unit is called a Media Access Unit, or MAU. The MAU has 
a ring circuit inside it (for which the network topology is named). The ring inside the 
MAU serves as the bus for devices to obtain messages. 

The Hub Network

A hub network uses a main cable much like the bus network, which is called the 
backplane. The hub topology is shown in Figure 1.4. From the backplane, a set of cables 
leads to a hub, which is a box containing several ports into which devices are plugged. 
The cables to a connection point are often called drops, because they drop from the 
backplane to the ports. 
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Figure 1.4. A schematic of a hub network. 

Hub networks can be very large, using a high-speed fiber optic backplane and slightly 
slower Ethernet drops to hubs from which a workgroup can be supported. The hub 
network can also be small, with a couple of hubs supporting a few devices connected 
together by standard Ethernet cables. The hub network is scaleable (meaning you can 
start small and expand as you need to), which is part of its attraction. 

Hub networks have become popular for large installations, in part because they are 
easy to set up and maintain. They also can be the least expensive system in many larger 
installations, which adds to their attraction. The backplane can extend across a 
considerable distance just like a bus network, whereas the ports, or connection points, 
are usually grouped in a set placed in a box or panel. There can be many panels or 
connection boxes attached to the backplane. 

Wide Area Networks

As I mentioned earlier, LANs can be combined into a large entity called a WAN. WANs 
are usually composed of LANs joined together by a high-speed link (such as a telephone 
line or dedicated cable). At the entrance to each LAN, one or more machines act as the 
link between the LAN and WAN: these are called gateways. I talk about gateways and 
the types of gateways used in a WAN in more detail on many of the following days, but 
for now you need to know only that a gateway is the interface between a LAN and a 
WAN. The same applies for any LAN that accesses the Internet: one machine usually 
acts as the gateway from the LAN to the Internet (which is really just a very large 
WAN). 

Many terms other than gateway are also used. You will hear terms like router and bridge. 
They are all gateways, but they perform slightly different tasks. To understand their 
roles (which I mention many times in the next week's material), you need to take a quick 
look at how WANs are laid out. 

LANs can be tied to a WAN through a gateway that handles the passage of data 
between the LAN and WAN backbone. In a simple layout, a router is used to perform this 
function. This is shown in Figure 1.5. 

Figure 1.5. A router connects a LAN to the backbone. 

Another gateway device, called a bridge, is used to connect LANs using the same 
network protocol. Bridges are used only when the same network protocol (such as 
TCP/IP) is on both LANs. The bridge does not care which physical media is used. Bridges 
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can connect twisted-pair LANs to coaxial LANs, for example, or act as an interface to a 
fiber optic network. As long as the network protocol is the same, the bridge functions 
properly. 

If two or more LANs are involved in one organization and there is the possibility of a 
lot of traffic between them, it is better to connect the two LANs directly with a bridge 
instead of loading the backbone with the cross-traffic. This is shown in Figure 1.6. 

Figure 1.6. Using a bridge to connect two LANs. 

In a configuration using bridges between LANs, traffic from one LAN to another can be 
sent through the bridge instead of onto the backbone, providing better performance. For 
services such as Telnet and FTP, the speed difference between using a bridge and going 
through a router onto a heavily used backbone can be significant. 

WANs are an important subject, and I look at them again in more detail on Day 13, 
"Managing and Troubleshooting TCP/IP." 

Layers

Suppose you have to write a program that provides networking functions to every 
machine on your LAN. Writing a single software package that accomplishes every task 
required for communications between different computers would be a nightmarish task. 
Apart from having to cope with the different hardware architectures, simply writing 
the code for all the applications you desire would result in a program that was far too 
large to execute or maintain. 

Dividing all the requirements into similar-purpose groups is a sensible approach, much as 
a programmer breaks code into logical chunks. With open systems communications, groups 
are quite obvious. One group deals with the transport of data, another with the 
packaging of messages, another with end-user applications, and so on. Each group of 
related tasks is called a layer. 

The layers of an architecture are meant to be stand-
alone, independent entities. They usually cannot perform any 
observable task without interacting with other layers, but 
from a programming point of view they are self-contained. 
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Of course, some crossover of functionality is to be expected, and several different 
approaches to the same division of layers for a network protocol were proposed. One 
that became adopted as a standard is the Open Systems Interconnection Reference 
Model (which is discussed in more detail in the next section). The OSI Reference Model 
(OSI-RM) uses seven layers, as shown in Figure 1.7. The TCP/IP architecture is similar but 
involves only five layers, because it combines some of the OSI functionality in two 
layers into one. For now, though, consider the seven-layer OSI model. 

Figure 1.7. The OSI Reference Model showing all seven layers. 

The application, presentation, and session layers are all application-oriented in that 
they are responsible for presenting the application interface to the user. All three are 
independent of the layers below them and are totally oblivious to the means by which 
data gets to the application. These three layers are called the upper layers. 

The lower four layers deal with the transmission of data, covering the packaging, 
routing, verification, and transmission of each data group. The lower layers don't 
worry about the type of data they receive or send to the application, but deal simply 
with the task of sending it. They don't differentiate between the different applications 
in any way. 

The following sections explain each layer to help you understand the architecture of 
the OSI-RM (and later contrast it with the architecture of TCP/IP). 

The Application Layer

The application layer is the end-user interface to the OSI system. It is where the 
applications, such as electronic mail, USENET news readers, or database display modules, 
reside. The application layer's task is to display received information and send the user's 
new data to the lower layers. 

In distributed applications, such as client/server systems, the application layer is where 
the client application resides. It communicates through the lower layers to the server. 

The Presentation Layer

The presentation layer's task is to isolate the lower layers from the application's data 
format. It converts the data from the application into a common format, often called 
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the canonical representation. The presentation layer processes machine-dependent data 
from the application layer into a machine-independent format for the lower layers. 

The presentation layer is where file formats and even character formats (ASCII and 
EBCDIC, for example) are lost. The conversion from the application data format takes 
place through a "common network programming language" (as it is called in the OSI 
Reference Model documents) that has a structured format. 

The presentation layer does the reverse for incoming data. It is converted from the 
common format into application-specific formats, based on the type of application the 
machine has instructions for. If the data comes in without reformatting instructions, 
the information might not be assembled in the correct manner for the user's application. 

The Session Layer

The session layer organizes and synchronizes the exchange of data between application 
processes. It works with the application layer to provide simple data sets called 
synchronization points that let an application know how the transmission and reception of 
data are progressing. In simplified terms, the session layer can be thought of as a timing 
and flow control layer. 

The session layer is involved in coordinating communications between different 
applications, letting each know the status of the other. An error in one application 
(whether on the same machine or across the country) is handled by the session layer to 
let the receiving application know that the error has occurred. The session layer can 
resynchronize applications that are currently connected to each other. This can be 
necessary when communications are temporarily interrupted, or when an error has 
occurred that results in loss of data. 

The Transport Layer

The transport layer, as its name suggests, is designed to provide the "transparent 
transfer of data from a source end open system to a destination end open system," 
according to the OSI Reference Model. The transport layer establishes, maintains, and 
terminates communications between two machines. 

The transport layer is responsible for ensuring that data sent matches the data 
received. This verification role is important in ensuring that data is correctly sent, with 
a resend if an error was detected. The transport layer manages the sending of data, 



determining its order and its priority. 

The Network Layer

The network layer provides the physical routing of the data, determining the path 
between the machines. The network layer handles all these routing issues, relieving 
the higher layers from this issue. 

The network layer examines the network topology to determine the best route to send 
a message, as well as figuring out relay systems. It is the only network layer that sends 
a message from source to target machine, managing other chunks of data that pass 
through the system on their way to another machine. 

The Data Link Layer

The data link layer, according to the OSI reference paper, "provides for the control of 
the physical layer, and detects and possibly corrects errors that can occur." In 
practicality, the data link layer is responsible for correcting transmission errors 
induced during transmission (as opposed to errors in the application data itself, which 
are handled in the transport layer). 

The data link layer is usually concerned with signal interference on the physical 
transmission media, whether through copper wire, fiber optic cable, or microwave. 
Interference is common, resulting from many sources, including cosmic rays and stray 
magnetic interference from other sources. 

The Physical Layer

The physical layer is the lowest layer of the OSI model and deals with the "mechanical, 
electrical, functional, and procedural means" required for transmission of data, 
according to the OSI definition. This is really the wiring or other transmission form. 

When the OSI model was being developed, a lot of concern dealt with the lower two 
layers, because they are, in most cases, inseparable. The real world treats the data link 
layer and the physical layer as one combined layer, but the formal OSI definition 
stipulates different purposes for each. (TCP/IP includes the data link and physical 



layers as one layer, recognizing that the division is more academic than practical.) 

Terminology and Notations

Both OSI and TCP/IP are rooted in formal descriptions, presented as a series of complex 
documents that define all aspects of the protocols. To define OSI and TCP/IP, several 
new terms were developed and introduced into use; some (mostly OSI terms) are rather 
unusual. You might find the term OSI-speak used to refer to some of these rather 
grotesque definitions, much as legalese refers to legal terms. 

To better understand the details of TCP/IP, it is necessary to deal with these terms now. 
You won't see all these terms in this book, but you might encounter them when reading 
manuals or online documentation. Therefore, all the major terms are covered here. 

Many of the terms used by both OSI and TCP/IP might seem 
to have multiple meanings, but there is a definite attempt to 
provide a single, consistent definition for each word. 
Unfortunately, the user community is slow to adopt new 
terminology, so there is a considerable amount of confusion. 

Packets

To transfer data effectively, many experiments have shown that creating a uniform 
chunk of data is better than sending characters singly or in widely varying sized 
groups. Usually these chunks of data have some information ahead of them (the header) 
and sometimes an indicator at the end (the trailer). These chunks of data are called 
packets in most synchronous communications systems. 

The amount of data in a packet and the composition of the header can change depending 
on the communications protocol as well as some system limitations, but the concept of a 
packet always refers to the entire set (including header and trailer). The term packet is 
used often in the computer industry, sometimes when it shouldn't be. 



You often see the word packet used as a generic reference to any group of data packaged 
for transmission. As an application's data passes through the layers of the architecture, 
each adds more information. The term packet is frequently used at each stage. Treat the 
term packet as a generalization for any data with additional information, instead of the 
specific result of only one layer's addition of header and trailer. This goes against the 
efforts of both OSI and the TCP governing bodies, but it helps keep your sanity intact! 

Subsystems

A subsystem is the collective of a particular layer across a network. For example, if 10 
machines are connected together, each running the seven-layer OSI model, all 10 
application layers are the application subsystem, all 10 data link layers are the data 
link subsystem, and so on. As you might have already deduced, with the OSI Reference 
Model there are seven subsystems. 

It is entirely possible (and even likely) that all the individual components in a 
subsystem will not be active at one time. Using the 10-machine example again, only three 
might have the data link layer actually active at any moment in time, but the 
cumulative of all the machines makes up the subsystem. 

Entities

A layer can have more than one part to it. For example, the transport layer can have 
routines that verify checksums as well as routines that handle resending packets that 
didn't transfer correctly. Not all these routines are active at once, because they might 
not be required at any moment. The active routines, though, are called entities. The 
word entity was adopted in order to find a single term that could not be confused with 
another computer term such as module, process, or task. 

N Notation

The notations N, N+1, N+2, and so on are used to identify a layer and the layers that 
are related to it. Referring to Figure 1.7, if the transport layer is layer N, the physical 
layer is N–3 and the presentation layer is N+2. With OSI, N always has a value of 1 
through 7 inclusive. 

One reason this notation was adopted was to enable writers to refer to other layers 



without having to write out their names every time. It also makes flow charts and 
diagrams of interactions a little easier to draw. The terms N+1 and N–1 are commonly 
used in both OSI and TCP for the layers above and below the current layer, 
respectively, as you will see. 

To make things even more confusing, many OSI standards refer to a layer by the first 
letter of its name. This can lead to a real mess for the casual reader, because "S-entity," 
"5-entity," and "layer 5" all refer to the session layer. 

N-Functions

Each layer performs N-functions. The functions are the different things the layer does. 
Therefore, the functions of the transport layer are the different tasks that the layer 
provides. For most purposes in this book, functions and entities mean the same thing. 

N-Facilities

This uses the hierarchical layer structure to express the idea that one layer provides a 
set of facilities to the next higher layer. This is sensible, because the application layer 
expects the presentation layer to provide a robust, well-defined set of facilities to it. In 
OSI-speak, the (N+1)-entities assume a defined set of N-facilities from the N-entity. 

Services

The entire set of N-facilities provided to the (N+1)-entities is called the N-service. In 
other words, the service is the entire set of N-functions provided to the next higher 
layer. Services might seem like functions, but there is a formal difference between the 
two. The OSI documents go to great lengths to provide detailed descriptions of services, 
with a "service definition standard" for each layer. This was necessary during the 
development of the OSI standard so that the different tasks involved in the 
communications protocol could be assigned to different layers, and so that the 
functions of each layer are both well-defined and isolated from other layers. 

The service definitions are formally developed from the bottom layer (physical) upward 
to the top layer. The advantage of this approach is that the design of the N+1 layer can 
be based on the functions performed in the N layer, avoiding two functions that 



accomplish the same task in two adjacent layers. 

An entire set of variations on the service name has been developed to apply these 
definitions, some of which are in regular use: 

An N-service user is a user of a service provided by the N layer to the next higher (N+1) 
layer. 

An N-service provider is the set of N-entities that are involved in providing the N layer 
service. 

An N-service access point (often abbreviated to N-SAP) is where an N-service is provided 
to an (N+1)-entity by the N-service provider. 

N-service data is the packet of data exchanged at an N-SAP. 

N-service data units (N-SDUs) are the individual units of data 
exchanged at an N-SAP (so that N-service data is made up of N-
SDUs). 

These terms are shown in Figure 1.8. Another common term is encapsulation, which is the 
addition of control information to a packet of data. The control data contains 
addressing details, checksums for error detection, and protocol control functions. 

Figure 1.8. Service providers and service users communicate through service access 
points. 

Making Sense of the Jargon

It is important to remember that all these terms are used in a formal description, 
because a formal language is usually the only method to adequately describe 
something as complex as a communications protocol. It is possible, though, to fit these 
terms together so that they make a little more sense when you encounter them. An 
example should help. 

The session layer has a set of session functions. It provides a set of session facilities to 
the layer above it, the presentation layer. The session layer is made up of session 
entities. The presentation layer is a user of the services provided by the session layer 
(layer 5). A presentation entity is a user of the services provided by the session layer and 
is called a presentation service user. 
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The session service provider is the collection of session entities that are actively 
involved in providing the presentation layer with the session's services. The point at 
which the session service is provided to the presentation layer is the session service 
access point, where the session service data is sent. The individual bits of data in the 
session service data are called session service data units. 

Confusing? Believe it or not, after a while you will begin to feel more comfortable 
with these terms. The important ones to know now are that a layer provides a set of 
entities through a service access point to the next higher layer, which is called the 
service user. The data is sent in chunks called service data, made up of service data 
units. 

Queues and Connections

Communication between two parties (whether over a telephone, between layers of an 
architecture, or between applications themselves) takes place in three distinct stages: 
establishment of the connection, data transfer, and connection termination. 

Communication between two OSI applications in the same layer is through queues to the 
layer beneath them. Each application (more properly called a service user) has two 
queues, one for each direction to the service provider of the layer beneath (which 
controls the whole layer). In OSI-speak, the two queues provide for simultaneous (or 
atomic) interactions between two N-service action points. 

Data, called service primitives, is put into and retrieved from the queue by the 
applications (service users). A service primitive can be a block of data, an indicator that 
something is required or received, or a status indicator. As with most aspects of OSI, a 
lexicon has been developed to describe the actions in these queues: 

A request primitive is when one service submits a service primitive to the queue (through 
the N-SAP) requesting permission to communicate with another service in the same layer. 

An indication primitive is what the service provider in the layer beneath the sending 
application sends to the intended receiving application to let it know that 
communication is desired. 

A response primitive is sent by the receiving application to the layer beneath's service 
provider to acknowledge the granting of communications between the two service users. 

A confirmation primitive is sent from the service provider to the 
final application to indicate that both applications on the 
layer above can now communicate. 



An example might help clarify the process. Assume that two applications in the 
presentation layer want to communicate with each other. They can't do so directly 
(according to the OSI model), so they must go through the layer below them. These steps 
are shown in Figure 1.9. 

Figure 1.9. Two applications communicate through SAPs using primitives. 

The first application sends a request primitive to the service provider of the session 
layer and waits. The session layer's service provider removes the request primitive from 
the inbound queue from the first application and sends an indication primitive to the 
second application's inbound queue. 

The second application takes the indication primitive from its queue to the session 
service provider and decides to accept the request for connection by sending a positive 
response primitive back through its queue to the session layer. This is received by the 
session layer service provider, and a confirmation primitive is sent to the first 
application in the presentation layer. This is a process called confirmed service because 
the applications wait for confirmation that communications are established and ready. 

OSI also provides for unconfirmed service, in which a request primitive is sent to the service 
provider, sending the indication primitive to the second application. The response and 
confirmation primitives are not sent. This is a sort of "get ready, because here it comes 
whether you want it or not" communication, often referred to as send and pray. 

When two service users are using confirmed service to communicate, they are considered 
connected. Two applications are talking to each other, aware of what the other is 
doing with the service data. OSI refers to the establishment and maintenance of state 
information between the two, or the fact that each knows when the other is sending or 
receiving. OSI calls this connection-oriented or connection-mode communications. 

Connectionless communication is when service data is sent independently, as with 
unconfirmed service. The service data is self-contained, possessing everything a receiving 
service user needs to know. These service data packets are often called datagrams. The 
application that sends the datagram has no idea who receives the datagram and how it is 
handled, and the receiving service users have no idea who sent it (other than 
information that might be contained within the datagram itself). OSI calls this 
connectionless-mode. 

OSI (and TCP/IP) use both connected and connectionless systems between layers of their 
architecture. Each has its benefits and ideal implementations. All these communications 
are between applications (service users) in each layer, using the layer beneath to 
communicate. There are many service users, and this process is going on all the time. It's 
quite amazing when you think about it. 
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Standards

People don't question the need for rules in a board game. If you didn't have rules, each 
player could be happily playing as it suits them, regardless of whether their play was 
consistent with that of other players. The existence of rules ensures that each player 
plays the game in the same way, which might not be as much fun as a free-for-all. 
However, when a fight over a player's actions arises, the written rules clearly indicate 
who is right. The rules are a set of standards by which a game is played. 

Standards prevent a situation arising where two seemingly compatible systems really 
are not. For example, 10 years ago when CP/M was the dominant operating system, the 
5.25-inch floppy was used by most systems. But the floppy from a Kaypro II couldn't be 
read by an Osbourne I because the tracks were laid out in a different manner. A utility 
program could convert between the two, but that extra step was a major annoyance for 
machine users. 

When the IBM PC became the platform of choice, the 5.25-inch format used by the IBM 
PC was adopted by other companies to ensure disk compatibility. The IBM format became 
a de facto standard, one adopted because of market pressures and customer demand. 

Setting Standards

Creating a standard in today's world is not a simple matter. Several organizations are 
dedicated to developing the standards in a complete, unambiguous manner. The most 
important of these is the International Organization for Standardization, or ISO (often 
called the International Standardization Organization to fit their acronym, although 
this is incorrect). ISO consists of standards organizations from many countries who try 
to agree on international criterion. The American National Standards Institute (ANSI), 
British Standards Institute (BSI), Deutsches Institut fur Normung (DIN), and Association 
Francaise du Normalization (AFNOR) are all member groups. The ISO developed the Open 
Systems Interconnection (OSI) standard that is discussed throughout this book. 

Each nation's standards organization can create a standard for that country, of 
course. The goal of ISO, however, is to agree on worldwide standards. Otherwise, 
incompatibilities could exist that wouldn't allow one country's system to be used in 
another. (An example of this is with television signals: the US relies on NTSC, whereas 
Europe uses PAL—systems that are incompatible with each other.) 

Curiously, the language used for most international standards is English, even though 



the majority of participants in a standards committee are not from English-speaking 
countries. This can cause quite a bit of confusion, especially because most standards are 
worded awkwardly to begin with. 

The reason most standards involve awkward language is that to describe something 
unambiguously can be very difficult, sometimes necessitating the creation of new terms 
that the standard defines. Not only must the concepts be clearly defined, but the 
absolute behavior is necessary too. With most things that standards apply to, this means 
using numbers and physical terms to provide a concrete definition. Defining a 2x4 piece of 
lumber necessitates the use of a measurement of some sort, and similarly defining 
computer terms requires mathematics. 

Simply defining a method of communications, such as TCP/IP, would be fairly 
straightforward if it weren't for the complication of defining it for open systems. The 
use of an open system adds another difficulty because all aspects of the standard must 
be machine-independent. Imagine trying to define a 2x4 without using a measurement you 
are familiar with, such as inches, or if inches are adopted, it would be difficult to define 
inches in an unambiguous way (which indeed is what happens, because most units of 
length are defined with respect to the wavelength of a particular kind of coherent 
light). 

Computers communicate through bits of data, but those bits can represent characters, 
numbers, or something else. Numbers could be integers, fractions, or octal 
representations. Again, you must define the units. You can see that the complications 
mount, one on top of the other. 

To help define a standard, an abstract approach is usually used. In the case of OSI, the 
meaning (called the semantics) of the data transferred (the abstract syntax) is first 
dealt with, and the exact representation of the data in the machine (the concrete 
syntax) and the means by which it is transferred (transfer syntax) are handled 
separately. The separation of the abstract lets the data be represented as an entity, 
without concern for what it really means. It's a little like treating your car as a unit 
instead of an engine, transmission, steering wheel, and so on. The abstraction of the 
details to a simpler whole makes it easier to convey information. ("My car is broken" is 
abstract, whereas "the power steering fluid has all leaked out" is concrete.) 

To describe systems abstractly, it is necessary to have a language that meets the 
purpose. Most standards bodies have developed such a system. The most commonly used is 
ISO's Abstract Syntax Notation One, frequently shortened to ASN.1. It is suited 
especially for describing open systems networking. Thus, it's not surprising to find it used 
extensively in the OSI and TCP descriptions. Indeed, ASN.1 was developed concurrently 
with the OSI standards when it became necessary to describe upper-layer functions. 

The primary concept of ASN.1 is that all types of data, regardless of type, size, origin, or 
purpose, can be represented by an object that is independent of the hardware, operating 



system software, or application. The ASN.1 system defines the contents of a datagram 
protocol header—the chunk of information at the beginning of an object that describes 
the contents to the system. (Headers are discussed in more detail in the section titled 
"Protocol Headers" later in this chapter.) 

Part of ASN.1 describes the language used to describe objects and data types (such as a 
data description language in database terminology). Another part defines the basic 
encoding rules that deal with moving the data objects between systems. ASN.1 defines 
data types that are used in the construction of data packets (datagrams). It provides for 
both structured and unstructured data types, with a list of 28 supported types. 

Don't be too worried about learning ASN.1 in this book. I 
refer to it in passing in only a couple of places. It is useful, 
though, to know that the language is provided for the formal 
definition of all the aspects of TCP/IP. 

Internet Standards

When the Defense Advanced Research Projects Agency (DARPA) was established in 1980, 
a group was formed to develop a set of standards for the Internet. The group, called the 
Internet Configuration Control Board (ICCB) was reorganized into the Internet 
Activities Board (IAB) in 1983, whose task was to design, engineer, and manage the 
Internet. 

In 1986, the IAB turned over the task of developing the Internet standards to the 
Internet Engineering Task Force (IETF), and the long-term research was assigned to the 
Internet Research Task Force (IRTF). The IAB retained final authorization over 
anything proposed by the two task forces. 

The last step in this saga was the formation of the Internet Society in 1992, when the 
IAB was renamed the Internet Architecture Board. This group is still responsible for 
existing and future standards, reporting to the board of the Internet Society. 

After all that, what happened during the shuffling? Almost from the beginning, the 
Internet was defined as "a loosely organized international collaboration of 
autonomous, interconnected networks," which supported host-to-host communications 
"through voluntary adherence to open protocols and procedures" defined in a technical 



paper called the Internet Standards, RFC 1310,2. That definition is still used today. 

The IETF continues to work on refining the standards used for communications over the 
Internet through a number of working groups, each one dedicated to a specific aspect of 
the overall Internet protocol suite. There are working groups dedicated to network 
management, security, user services, routing, and many more things. It is interesting that 
the IETF's groups are considerably more flexible and efficient than those of, say, the 
ISO, whose working groups can take years to agree on a standard. In many cases, the 
IETF's groups can form, create a recommendation, and disband within a year or so. This 
helps continuously refine the Internet standards to reflect changing hardware and 
software capabilities. 

Creating a new Internet standard (which happened with TCP/IP) follows a well-defined 
process, shown schematically in Figure 1.10. It begins with a request for comment (RFC). 
This is usually a document containing a specific proposal, sometimes new and sometimes a 
modification of an existing standard. RFCs are widely distributed, both on the network 
itself and to interested parties as printed documents. Important RFCs and instructions 
for retrieving them are included in the appendixes at the end of this book. 

Figure 1.10. The process for adopting a new Internet standard. 

The RFC is usually discussed for a while on the network itself, where anyone can 
express their opinion, as well as in formal IETF working group meetings. After a suitable 
amount of revision and continued discussion, an Internet draft is created and distributed. 
This draft is close to final form, providing a consolidation of all the comments the RFC 
generated. 

The next step is usually a proposed standard, which remains as such for at least six 
months. During this time, the Internet Society requires at least two independent and 
interoperable implementations to be written and tested. Any problems arising from the 
actual tests can then be addressed. (In practice, it is usual for many implementations to 
be written and given a thorough testing.) 

After that testing and refinement process is completed, a draft standard is written, which 
remains for at least four months, during which time many more implementations are 
developed and tested. The last step—after many months—is the adoption of the 
standard, at which point it is implemented by all sites that require it. 

Protocols

Diplomats follow rules when they conduct business between nations, which you see 
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referred to in the media as protocol. Diplomatic protocol requires that you don't insult 
your hosts and that you do respect local customs (even if that means you have to eat 
some unappetizing dinners!). Most embassies and commissions have specialists in protocol, 
whose function is to ensure that everything proceeds smoothly when communications 
are taking place. The protocol is a set of rules that must be followed in order to "play 
the game," as career diplomats are fond of saying. Without the protocols, one side of the 
conversation might not really understand what the other is saying. 

Similarly, computer protocols define the manner in which communications take place. If 
one computer is sending information to another and they both follow the protocol 
properly, the message gets through, regardless of what types of machines they are and 
what operating systems they run (the basis for open systems). As long as the machines 
have software that can manage the protocol, communications are possible. Essentially, 
a computer protocol is a set of rules that coordinates the exchange of information. 

Protocols have developed from very simple processes ("I'll send you one character, you 
send it back, and I'll make sure the two match") to elaborate, complex mechanisms that 
cover all possible problems and transfer conditions. A task such as sending a message 
from one coast to another can be very complex when you consider the manner in which 
it moves. A single protocol to cover all aspects of the transfer would be too large, 
unwieldy, and overly specialized. Therefore, several protocols have been developed, 
each handling a specific task. 

Combining several protocols, each with their own dedicated purposes, would be a 
nightmare if the interactions between the protocols were not clearly defined. The 
concept of a layered structure was developed to help keep each protocol in its place 
and to define the manner of interaction between each protocol (essentially, a protocol 
for communications between protocols!). 

As you saw earlier, the ISO has developed a layered protocol system called OSI. OSI 
defines a protocol as "a set of rules and formats (semantic and syntactic), which 
determines the communication behavior of N-entities in the performance of N-functions." 
You might remember that N represents a layer, and an entity is a service component of a 
layer. 

When machines communicate, the rules are formally defined and account for possible 
interruptions or faults in the flow of information, especially when the flow is 
connectionless (no formal connection between the two machines exists). In such a 
system, the ability to properly route and verify each packet of data (datagram) is 
vitally important. As discussed earlier, the data sent between layers is called a service 
data unit (SDU), so OSI defines the analogous data between two machines as a protocol 
data unit (PDU). 

The flow of information is controlled by a set of actions that define the state machine 
for the protocol. OSI defines these actions as protocol control information (PCI). 



Breaking Data Apart

It is necessary to introduce a few more terms commonly used in OSI and TCP/IP, but 
luckily they are readily understood because of their real-world connotations. These 
terms are necessary because data doesn't usually exist in manageable chunks. The data 
might have to be broken down into smaller sections, or several small sections can be 
combined into a large section for more efficient transfer. The basic terms are as follows: 

Segmentation is the process of breaking an N-service data unit (N-SDU) into several N-
protocol data units (N-PDUs). 

Reassembly is the process of combining several N-PDUs into an N-SDU (the reverse of 
segmentation). 

Blocking is the combination of several SDUs (which might be from different services) into 
a larger PDU within the layer in which the SDUs originated. 

Unblocking is the breaking up of a PDU into several SDUs in the same layer. 

Concatenation is the process of one layer combining several N-PDUs from the next higher 
layer into one SDU (like blocking except occurring across a layer boundary). 

Separation is the reverse of concatenation, so that a layer 
breaks a single SDU into several PDUs for the next layer 
higher (like unblocking except across a layer boundary). 

These six processes are shown in Figure 1.11. 

Figure 1.11. Segmentation, reassembly, blocking, unblocking, concatenation, and 
separation. 

Finally, here is one last set of definitions that deal with connections: 

Multiplexing is when several connections are supported by a single connection in the next 
lower layer (so three presentation service connections could be multiplexed into a 
single session connection). 

Demultiplexing is the reverse of multiplexing, in which one connection is split into several 
connections for the layer above it. 
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Splitting is when a single connection is supported by several connections in the layer 
below (so the data link layer might have three connections to support one network 
layer connection). 

Recombining is the reverse of splitting, so that several 
connections are combined into a single one for the layer above. 

Multiplexing and splitting (and their reverses, demultiplexing and recombining) are 
different in the manner in which the lines are split. With multiplexing, several 
connections combine into one in the layer below. With splitting, however, one 
connection can be split into several in the layer below. As you might expect, each has 
its importance within TCP and OSI. 

Protocol Headers

Protocol control information is information about the datagram to which it is 
attached. This information is usually assembled into a block that is attached to the 
front of the data it accompanies and is called a header or protocol header. Protocol 
headers are used for transferring information between layers as well as between 
machines. As mentioned earlier, the protocol headers are developed according to rules 
laid down in the ISO's ASN.1 document set. 

When a protocol header is passed to the layer beneath, the datagram including the 
layer's header is treated as the entire datagram for that receiving layer, which adds its 
own protocol header to the front. Thus, if a datagram started at the application layer, 
by the time it reached the physical layer, it would have seven sets of protocol headers 
on it. These layer protocol headers are used when moving back up the layer structure; 
they are stripped off as the datagram moves up. An illustration of this is shown in Figure 
1.12. 

Figure 1.12. Adding each layer's protocol header to user data. 

It is easier to think of this process as layers on an onion. The inside is the data that is to 
be sent. As it passes through each layer of the OSI model, another layer of onion skin is 
added. When it is finished moving through the layers, several protocol headers are 
enclosing the data. When the datagram is passed back up the layers (probably on 
another machine), each layer peels off the protocol header that corresponds to the 
layer. When it reaches the destination layer, only the data is left. 

This process makes sense, because each layer of the OSI model requires different 
information from the datagram. By using a dedicated protocol header for each layer of 
the datagram, it is a relatively simple task to remove the protocol header, decode its 
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instructions, and pass the rest of the message on. The alternative would be to have a 
single large header that contained all the information, but this would take longer to 
process. The exact contents of the protocol header are not important right now, but I 
examine them later when looking at the TCP protocol. 

As usual, OSI has a formal description for all this, which states that the N-user data to 
be transferred is prepended with N-protocol control information (N-PCI) to form an N-
protocol data unit (N-PDU). The N-PDUs are passed across an N-service access point (N-
SAP) as one of a set of service parameters comprising an N-service data unit (N-SDU). The 
service parameters comprising the N-SDU are called N-service user data (N-SUD), which 
is prepended to the (N–1)PCI to form another (N–1)PDU. 

For every service in a layer, there is a protocol for it to communicate to the layer 
below it (remember that applications communicate through the layer below, not 
directly). The protocol exchanges for each service are defined by the system, and to a 
lesser extent by the application developer, who should be following the rules of the 
system. 

Protocols and headers might sound a little complex or overly complicated for the task 
that must be accomplished, but considering the original goals of the OSI model, it is 
generally acknowledged that this is the best way to go. (Many a sarcastic comment has 
been made about OSI and TCP that claim the header information is much more important 
than the data contents. In some ways this is true, because without the header the data 
would never get to its destination.) 

Summary

Today's text has thrown a lot of terminology at you, most of which you will see 
frequently in the following chapters. In most cases, a gentle reminder of the definition 
accompanies the first occurrence of the term. To understand the relationships between 
the different terms, though, you might have to refer back to today's material. 

You now have the basic knowledge to relate TCP/IP to the OSI's layered model, which 
will help you understand what TCP/IP does (and how it goes about doing it). The next 
chapter looks at the history of TCP/IP and the growth of the Internet. 

Q&A



What are the three main types of LAN architecture? What are their primary 
characteristics? 

The three network architectures are bus, ring, and hub. There are others, but these 
three describe the vast majority of all LANs. 

A bus network is a length of cable that has a connector for each device directly 
attached to it. Both ends of the network cable are terminated. A ring network has a 
central control unit called a Media Access Unit to which all devices are attached by 
cables. A hub network has a backplane with connectors leading through another cable 
to the devices. 

What are the seven OSI layers and their responsibilities? 

The OSI layers (from the bottom up) are as follows: 

Physical: Transmits data 

Data Link: Corrects transmission errors 

Network: Provides the physical routing information 

Transport: Verifies that data is correctly transmitted 

Session: Synchronizes data exchange between upper and lower layers 

Presentation: Converts network data to application-specific formats 

Application: End-user interface 

What is the difference between segmentation and reassembly, and concatenation 
and separation? 

Segmentation is the breaking apart of a large N-service data unit (N-SDU) into several 
smaller N-protocol data units (N-PDUs), whereas reassembly is the reverse. 

Concatenation is the combination of several N-PDUs from the next higher layer into 
one SDU. Separation is the reverse. 

Define multiplexing and demultiplexing. How are they useful? 

Multiplexing is when several connections are supported by a single connection. 
According to the formal definition, this applies to layers (so that three presentation 
service connections could be multiplexed into a single session connection). However, it 



is a term generally used for all kinds of connections, such as putting four modem calls 
down a single modem line. Demultiplexing is the reverse of multiplexing, in which one 
connection is split into several connections. 

Multiplexing is a key to supporting many connections at once with limited resources. A 
typical example is a remote office with twenty terminals, each of which is connected to 
the main office by a telephone line. Instead of requiring twenty lines, they can all be 
multiplexed into three or four. The amount of multiplexing possible depends on the 
maximum capacity of each physical line. 

How many protocol headers are added by the time an OSI-based e-mail application 
(in the application layer) has sent a message to the physical layer for 
transmission? 

Seven, one for each OSI layer. More protocol headers can be added by the actual 
physical network system. As a general rule, each layer adds its own protocol 
information. 

Quiz

1.  Provide definitions for each of the following terms: 

packet 

subsystem 

entity 

service 

layer 

ISO 

ASN.1 

2.  What does each of the following primitives do? 

service primitive 

request primitive 

indication primitive 



response primitive 

confirmation primitive 

3.  What is a Service Access Point? How many are there per layer? 

4.  Explain the process followed in adopting a new Internet Standard for TCP/IP. 

5.  Use diagrams to show the differences between segmentation, separation, and 
blocking. 
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— 2 — 
TCP/IP and the Internet

Before proceeding into a considerable amount of detail about TCP/IP, the Internet, and 
the Internet Protocol (IP), it is worthwhile to try to complete a quick outline of TCP/IP. 
Then, as the details of each protocol are discussed individually, they can be placed in 
the broader outline more easily, thereby leading to a more complete understanding in 
the next two chapters. 

Just what is TCP/IP? As you saw on Day 1, it is a software-based communications protocol 
used in networking. Although the name TCP/IP implies that the entire scope of the 
product is a combination of two protocols—Transmission Control Protocol and Internet 
Protocol—the term TCP/IP refers not to a single entity combining two protocols, but a 
larger set of software programs that provides network services such as remote logins, 
remote file transfers, and electronic mail. TCP/IP provides a method for transferring 
information from one machine to another. A communications protocol should handle 
errors in transmission, manage the routing and delivery of data, and control the actual 
transmission by the use of predetermined status signals. TCP/IP accomplishes all of this. 

TCP/IP is not a single product. It is a catch-all name for a 
family of protocols that use a similar behavior. Using the term 
TCP/IP usually refers to one or more protocols within the 
family, not just TCP and IP. 

In the first chapter, you saw that the OSI Reference Model is composed of seven layers. 
TCP/IP was designed with layers as well, although they do not correspond one-to-one 
with the OSI-RM layers. You can overlay the TCP/IP programs on this model to give you 
a rough idea of where all the TCP/IP layers reside. I do that in a little more detail later 
in this chapter. Before that, I take a quick look at the TCP/IP protocols and how they 
relate to each other, and show a rough mapping to the OSI layers. 

Figure 2.1 shows the basic elements of the TCP/IP family of protocols. You can see that 
TCP/IP is not involved in the bottom two layers of the OSI model (data link and physical) 
but begins in the network layer, where the Internet Protocol (IP) resides. In the 
transport layer, the Transmission Control Protocol (TCP) and User Datagram Protocol 



(UDP) are involved. Above this, the utilities and protocols that make up the rest of the 
TCP/IP suite are built using the TCP or UDP and IP layers for their communications 
system. 

Figure 2.1. TCP/IP suite and OSI layers. 

Figure 2.1 shows that some of the upper-layer protocols depend on TCP (such as Telnet 
and FTP), whereas some depend on UDP (such as TFTP and RPC). Most upper-layer TCP/IP 
protocols use only one of the two transport protocols (TCP or UDP), although a few, 
including DNS (Domain Name System) can use both. 

A note of caution about TCP/IP: Despite the fact that TCP/IP is an open protocol, many 
companies have modified it for their own networking system. There can be 
incompatibilities because of these modifications, which, even though they might adhere 
to the official standards, might have other aspects that cause problems. Luckily, these 
types of changes are not rampant, but you should be careful when choosing a TCP/IP 
product to ensure its compatibility with existing software and hardware. 

TCP/IP is dependent on the concept of clients and servers. This has nothing to do with a 
file server being accessed by a diskless workstation or PC. The term client/server has a 
simple meaning in TCP/IP: any device that initiates communications is the client, and the 
device that answers is the server. The server is responding to (serving) the client's 
requests. 

A Quick Overview of TCP/IP Components

To understand the roles of the many components of the TCP/IP protocol family, it is 
useful to know what you can do over a TCP/IP network. Then, once the applications are 
understood, the protocols that make it possible are a little easier to comprehend. The 
following list is not exhaustive but mentions the primary user applications that TCP/IP 
provides. 

Telnet

The Telnet program provides a remote login capability. This lets a user on one machine 
log onto another machine and act as though he or she were directly in front of the 
second machine. The connection can be anywhere on the local network or on another 
network anywhere in the world, as long as the user has permission to log onto the 
remote system. 
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You can use Telnet when you need to perform actions on a machine across the country. 
This isn't often done except in a LAN or WAN context, but a few systems accessible 
through the Internet allow Telnet sessions while users play around with a new 
application or operating system. 

File Transfer Protocol

File Transfer Protocol (FTP) enables a file on one system to be copied to another system. 
The user doesn't actually log in as a full user to the machine he or she wants to access, 
as with Telnet, but instead uses the FTP program to enable access. Again, the correct 
permissions are necessary to provide access to the files. 

Once the connection to a remote machine has been established, FTP enables you to copy 
one or more files to your machine. (The term transfer implies that the file is moved from 
one system to another but the original is not affected. Files are copied.) FTP is a widely 
used service on the Internet, as well as on many large LANs and WANs. 

Simple Mail Transfer Protocol

Simple Mail Transfer Protocol (SMTP) is used for transferring electronic mail. SMTP is 
completely transparent to the user. Behind the scenes, SMTP connects to remote 
machines and transfers mail messages much like FTP transfers files. Users are almost 
never aware of SMTP working, and few system administrators have to bother with it. 
SMTP is a mostly trouble-free protocol and is in very wide use. 

Kerberos

Kerberos is a widely supported security protocol. Kerberos uses a special application 
called an authentication server to validate passwords and encryption schemes. Kerberos is 
one of the more secure encryption systems used in communications and is quite common in 
UNIX. 

Domain Name System



Domain Name System (DNS) enables a computer with a common name to be converted to a 
special network address. For example, a PC called Darkstar cannot be accessed by 
another machine on the same network (or any other connected network) unless some 
method of checking the local machine name and replacing the name with the machine's 
hardware address is available. DNS provides a conversion from the common local name to 
the unique physical address of the device's network connection. 

Simple Network Management Protocol

Simple Network Management Protocol (SNMP) provides status messages and problem 
reports across a network to an administrator. SNMP uses User Datagram Protocol (UDP) 
as a transport mechanism. SNMP employs slightly different terms from TCP/IP, working 
with managers and agents instead of clients and servers (although they mean 
essentially the same thing). An agent provides information about a device, whereas a 
manager communicates across a network with agents. 

Network File System

Network File System (NFS) is a set of protocols developed by Sun Microsystems to enable 
multiple machines to access each other's directories transparently. They accomplish this 
by using a distributed file system scheme. NFS systems are common in large corporate 
environments, especially those that use UNIX workstations. 

Remote Procedure Call

The Remote Procedure Call (RPC) protocol is a set of functions that enable an 
application to communicate with another machine (the server). It provides for 
programming functions, return codes, and predefined variables to support distributed 
computing. 

Trivial File Transfer Protocol



Trivial File Transfer Protocol (TFTP) is a very simple, unsophisticated file transfer 
protocol that lacks security. It uses UDP as a transport. TFTP performs the same task as 
FTP, but uses a different transport protocol. 

Transmission Control Protocol

Transmission Control Protocol (the TCP part of TCP/IP) is a communications protocol 
that provides reliable transfer of data. It is responsible for assembling data passed from 
higher-layer applications into standard packets and ensuring that the data is 
transferred correctly. 

User Datagram Protocol

User Datagram Protocol (UDP) is a connectionless-oriented protocol, meaning that it 
does not provide for the retransmission of datagrams (unlike TCP, which is connection-
oriented). UDP is not very reliable, but it does have specialized purposes. If the 
applications that use UDP have reliability checking built into them, the shortcomings of 
UDP are overcome. 

Internet Protocol

Internet Protocol (IP) is responsible for moving the packets of data assembled by either 
TCP or UDP across networks. It uses a set of unique addresses for every device on the 
network to determine routing and destinations. 

Internet Control Message Protocol

Internet Control Message Protocol (ICMP) is responsible for checking and generating 
messages on the status of devices on a network. It can be used to inform other devices of 
a failure in one particular machine. ICMP and IP usually work together. 



TCP/IP History

The architecture of TCP/IP is often called the Internet architecture because TCP/IP and 
the Internet as so closely interwoven. In the last chapter, you saw how the Internet 
standards were developed by the Defense Advanced Research Projects Agency (DARPA) 
and eventually passed on to the Internet Society. 

The Internet was originally proposed by the precursor of DARPA, called the Advanced 
Research Projects Agency (ARPA), as a method of testing the viability of packet-
switching networks. (When ARPA's focus became military in nature, the name was 
changed.) During its tenure with the project, ARPA foresaw a network of leased lines 
connected by switching nodes. The network was called ARPANET, and the switching 
nodes were called Internet Message Processors, or IMPs. 

The ARPANET was initially to be comprised of four IMPs located at the University of 
California at Los Angeles, the University of California at Santa Barbara, the Stanford 
Research Institute, and the University of Utah. The original IMPs were to be Honeywell 
316 minicomputers. 

The contract for the installation of the network was won by Bolt, Beranek, and 
Newman (BBN), a company that had a strong influence on the development of the 
network in the following years. The contract was awarded in late 1968, followed by 
testing and refinement over the next five years. 

Bolt, Beranek, and Newman (BBN) made many suggestions 
for the improvement of the Internet and the development of 
TCP/IP, for which their names are often associated with the 
protocol. 

In 1971, ARPANET entered into regular service. Machines used the ARPANET by 
connecting to an IMP using the "1822" protocol—so called because that was the number 
of the technical paper describing the system. During the early years, the purpose and 
utility of the network was widely (and sometimes heatedly) discussed, leading to 
refinements and modifications as users requested more functionality from the system. 

A commonly recognized need was the capability to transfer files from one machine to 
another, as well as the capability to support remote logins. Remote logins would enable 
a user in Santa Barbara to connect to a machine in Los Angeles over the network and 
function as though he or she were in front of the UCLA machine. The protocol then in 



use on the network wasn't capable of handling these new functionality requests, so new 
protocols were continually developed, refined, and tested. 

Remote login and remote file transfer were finally implemented in a protocol called 
the Network Control Program (NCP). Later, electronic mail was added through File 
Transfer Protocol (FTP). Together with NCP's remote logins and file transfer, this 
formed the basic services for ARPANET. 

By 1973, it was clear that NCP was unable to handle the volume of traffic and proposed 
new functionality. A project was begun to develop a new protocol. The TCP/IP and 
gateway architectures were first proposed in 1974. The published article by Cerf and 
Kahn described a system that provided a standardized application protocol that also 
used end-to-end acknowledgments. 

Neither of these concepts were really novel at the time, but more importantly (and with 
considerable vision), Cerf and Kahn suggested that the new protocol be independent of 
the underlying network and computer hardware. Also, they proposed universal 
connectivity throughout the network. These two ideas were radical in a world of 
proprietary hardware and software, because they would enable any kind of platform to 
participate in the network. The protocol was developed and became known as TCP/IP. 

A series of RFCs (Requests for Comment, part of the process for adopting new Internet 
Standards) was issued in 1981, standardizing TCP/IP version 4 for the ARPANET. In 1982, 
TCP/IP supplanted NCP as the dominant protocol of the growing network, which was now 
connecting machines across the continent. It is estimated that a new computer was 
connected to ARPANET every 20 days during its first decade. (That might not seem like 
much compared to the current estimate of the Internet's size doubling every year, but in 
the early 1980s it was a phenomenal growth rate.) 

During the development of ARPANET, it became obvious that nonmilitary researchers 
could use the network to their advantage, enabling faster communication of ideas as 
well as faster physical data transfer. A proposal to the National Science Foundation 
lead to funding for the Computer Science Network in 1981, joining the military with 
educational and research institutes to refine the network. This led to the splitting of 
the network into two different networks in 1984. MILNET was dedicated to unclassified 
military traffic, whereas ARPANET was left for research and other nonmilitary 
purposes. 

ARPANET's growth and subsequent demise came with the approval for the Office of 
Advanced Scientific Computing to develop wide access to supercomputers. They created 
NSFNET to connect six supercomputers spread across the country through T-1 lines 
(which operated at 1.544 Mbps). The Department of Defense finally declared ARPANET 
obsolete in 1990, when it was officially dismantled. 



Berkeley UNIX Implementations and TCP/IP

TCP/IP became important when the Department of Defense started including the 
protocols as military standards, which were required for many contracts. TCP/IP became 
popular primarily because of the work done at UCB (Berkeley). UCB had been a center of 
UNIX development for years, but in 1983 they released a new version that incorporated 
TCP/IP as an integral element. That version—4.2BSD (Berkeley System 
Distribution)—was made available to the world as public domain software. 

The popularity of 4.2BSD spurred the popularity of TCP/IP, especially as more sites 
connected to the growing ARPANET. Berkeley released an enhanced version (which 
included the so-called Berkeley Utilities) in 1986 as 4.3BSD. An optimized TCP 
implementation followed in 1988 (4.3BSD/Tahoe). Practically every version of TCP/IP 
available today has its roots (and much of its code) in the Berkeley versions. 

Despite the demise of Berkeley Software Distribution's 
UNIX version in 1993, the BSD and UCB developments are 
integral parts of TCP/IP and continue to be used as part of the 
protocol family's naming system. 

OSI and TCP/IP

The adoption of TCP/IP didn't conflict with the OSI standards because the two developed 
concurrently. In some ways, TCP/IP contributed to OSI, and vice-versa. Several 
important differences do exist, though, which arise from the basic requirements of TCP/IP 
which are: 

●     A common set of applications 

●     Dynamic routing 

●     Connectionless protocols at the networking level 

●     Universal connectivity 



●     Packet-switching 

The differences between the OSI architecture and that of TCP/IP relate to the layers 
above the transport level and those at the network level. OSI has both the session 
layer and the presentation layer, whereas TCP/IP combines both into an application 
layer. The requirement for a connectionless protocol also required TCP/IP to combine 
OSI's physical layer and data link layer into a network level. TCP/IP also includes the 
session and presentation layers of the OSI model into TCP/IP’s application layer. A 
schematic view of TCP/IP's layered structure compared with OSI's seven-layer model is 
shown in Figure 2.2. TCP/IP calls the different network level elements subnetworks. 

Figure 2.2. The OSI and TCP/IP layered structures. 

OSI and TCP/IP are not incompatible, but neither are they 
perfectly compatible. They both have a layered architecture, 
but the OSI architecture is much more rigorously defined, and 
the layers are more independent than TCP/IP's. 

Some fuss was made about the network level combination, although it soon became 
obvious that the argument was academic, as most implementations of the OSI model 
combined the physical and link levels on an intelligent controller (such as a network 
card). The combination of the two layers into a single layer had one major benefit: it 
enabled a subnetwork to be designed that was independent of any network protocols, 
because TCP/IP was oblivious to the details. This enabled proprietary, self-contained 
networks to implement the TCP/IP protocols for connectivity outside their closed 
systems. 

The layered approach gave rise to the name TCP/IP. The transport layer uses the 
Transmission Control Protocol (TCP) or one of several variants, such as the User 
Datagram Protocol (UDP). (There are other protocols in use, but TCP and UDP are the 
most common.) There is, however, only one protocol for the network level—the Internet 
Protocol (IP). This is what assures the system of universal connectivity, one of the 
primary design goals. 

There is a considerable amount of pressure from the user community to abandon the OSI 
model (and any future communications protocols developed that conform to it) in favor 
of TCP/IP. The argument hinges on some obvious reasons: 

●     TCP/IP is up and running and has a proven record. 

●     TCP/IP has an established, functioning management body. 
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●     Thousands of applications currently use TCP/IP and its well-documented 
application programming interfaces. 

●     TCP/IP is the basis for most UNIX systems, which are gaining the largest share of 
the operating system market (other than desktop single-user machines such as the 
PC and Macintosh). 

●     TCP/IP is vendor-independent. 

Arguing rather strenuously against TCP/IP, surprisingly enough, is the US 
government—the very body that sponsored it in the first place. Their primary argument 
is that TCP/IP is not an internationally adopted standard, whereas OSI has that 
recognition. The Department of Defense has even begun to move its systems away from 
the TCP/IP protocol set. A compromise will probably result, with some aspects of OSI 
adopted into the still-evolving TCP/IP protocol suite. 

TCP/IP and Ethernet

For many people the terms TCP/IP and Ethernet go together almost automatically, 
primarily for historical reasons, as well as the simple fact that there are more Ethernet-
based TCP/IP networks than any other type. Ethernet was originally developed at 
Xerox's Palo Alto Research Center as a step toward an electronic office communications 
system, and it has since grown in capability and popularity. 

Ethernet is a hardware system providing for the data link and physical layers of the OSI 
model. As part of the Ethernet standards, issues such as cable type and broadcast speeds 
are established. There are several different versions of Ethernet, each with a different 
data transfer rate. The most common is Ethernet version 2, also called 10Base5, Thick 
Ethernet, and IEEE 802.3 (after the number of the standard that defines the system 
adopted by the Institute of Electrical and Electronic Engineers). This system has a 10 
Mbps rate. 

There are several commonly used variants of Ethernet, such as Thin Ethernet (called 
10Base2), which can operate over thinner cable (such as the coaxial cable used in cable 
television systems), and Twisted-Pair Ethernet (10BaseT), which uses simple twisted-pair 
wires similar to telephone cable. The latter variant is popular for small companies 
because it is inexpensive, easy to wire, and has no strict requirements for distance 
between machines. 



It is usually easy to tell which type of Ethernet network 
is being used by checking the connector to a network card. If it 
has a telephone-style plug, it is 10BaseT. The cable for 10BaseT 
looks the same as telephone cable. If the network has a D-
shaped connector with many pins in it, it is 10Base5. A 10Base2 
network has a connector similar to a cable TV coaxial 
connector, except it locks into place. The 10Base2 connector is 
always circular. 

The size of a network is also a good indicator. 10Base5 is used in 
large networks with many devices and long transmission runs. 
10Base2 is used in smaller networks, usually with all the 
network devices in fairly close proximity. Twisted-pair (10BaseT) 
networks are often used for very small networks with a 
maximum of a few dozen devices in close proximity. 

Ethernet and TCP/IP work well together, with Ethernet providing the physical cabling 
(layers one and two) and TCP/IP the communications protocol (layers three and four) 
that is broadcast over the cable. The two have their own processes for packaging 
information: TCP/IP uses 32-bit addresses, whereas Ethernet uses a 48-bit scheme. The two 
work together, however, because of one component of TCP/IP called the Address 
Resolution Protocol (ARP), which converts between the two schemes. (I discuss ARP in 
more detail later, in the section titled "Address Resolution Protocol.") 

Ethernet relies on a protocol called Carrier Sense Multiple Access with Collision 
Detect (CSMA/CD). To simplify the process, a device checks the network cable to see if 
anything is currently being sent. If it is clear, the device sends its data. If the cable is 
busy (carrier detect), the device waits for it to clear. If two devices transmit at the same 
time (a collision), the devices know because of their constant comparison of the cable 
traffic to the data in the sending buffer. If a collision occurs, the devices wait a random 
amount of time before trying again. 

The Internet

As ARPANET grew out of a military-only network to add subnetworks in universities, 
corporations, and user communities, it became known as the Internet. There is no single 
network called the Internet, however. The term refers to the collective network of 
subnetworks. The one thing they all have in common is TCP/IP as a communications 
protocol. 



As described in the first chapter, the organization of the Internet and adoption of new 
standards is controlled by the Internet Advisory Board (IAB). Among other things, the 
IAB coordinates several task forces, including the Internet Engineering Task Force 
(IETF) and Internet Research Task Force (IRTF). In a nutshell, the IRTF is concerned 
with ongoing research, whereas the IETF handles the implementation and engineering 
aspects associated with the Internet. 

A body that has some bearing on the IAB is the Federal Networking Council (FNC), which 
serves as an intermediary between the IAB and the government. The FNC has an advisory 
capacity to the IAB and its task forces, as well as the responsibility for managing the 
government's use of the Internet and other networks. Because the government was 
responsible for funding the development of the Internet, it retains a considerable 
amount of control, as well as sponsoring some research and expansion of the Internet. 

The Structure of the Internet

As mentioned earlier, the Internet is not a single network but a collection of networks 
that communicate with each other through gateways. For the purposes of this chapter, a 
gateway (sometimes called a router) is defined as a system that performs relay functions 
between networks, as shown in Figure 2.3. The different networks connected to each 
other through gateways are often called subnetworks, because they are a smaller part 
of the larger overall network. This does not imply that a subnetwork is small or 
dependent on the larger network. Subnetworks are complete networks, but they are 
connected through a gateway as a part of a larger internetwork, or in this case the 
Internet. 

Figure 2.3. Gateways act as relays between subnetworks. 

With TCP/IP, all interconnections between physical networks are through gateways. An 
important point to remember for use later is that gateways route information packets 
based on their destination network name, not the destination machine. Gateways are 
supposed to be completely transparent to the user, which alleviates the gateway from 
handling user applications (unless the machine that is acting as a gateway is also 
someone's work machine or a local network server, as is often the case with small 
networks). Put simply, the gateway's sole task is to receive a Protocol Data Unit (PDU) 
from either the internetwork or the local network and either route it on to the next 
gateway or pass it into the local network for routing to the proper user. 

Gateways work with any kind of hardware and operating system, as long as they are 
designed to communicate with the other gateways they are attached to (which in this 
case means that it uses TCP/IP). Whether the gateway is leading to a Macintosh network, 
a set of IBM PCs, or mainframes from a dozen different companies doesn't matter to the 
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gateway or the PDUs it handles. 

There are actually several types of gateways, each 
performing a difference type of task. I look at the different 
gateways in more detail on Day 5, "Gateway and Routing 
Protocols." 

In the United States, the Internet has the NFSNET as its backbone, as shown in Figure 
2.4. Among the primary networks connected to the NFSNET are NASA's Space Physics 
Analysis Network (SPAN), the Computer Science Network (CSNET), and several other 
networks such as WESTNET and the San Diego Supercomputer Network (SDSCNET), not 
shown in Figure 2.4. There are also other smaller user-oriented networks such as the 
Because It's Time Network (BITNET) and UUNET, which provide connectivity through 
gateways for smaller sites that can't or don't want to establish a direct gateway to the 
Internet. 

Figure 2.4. The US Internet network. 

The NFSNET backbone is comprised of approximately 3,000 research sites, connected by T-3 
leased lines running at 44.736 Megabits per second. Tests are currently underway to 
increase the operational speed of the backbone to enable more throughput and 
accommodate the rapidly increasing number of users. Several technologies are being 
field-tested, including Synchronous Optical Network (SONET), Asynchronous Transfer 
Mode (ATM), and ANSI's proposed High-Performance Parallel Interface (HPPI). These new 
systems can produce speeds approaching 1 Gigabit per second. 

The Internet Layers

Most internetworks, including the Internet, can be thought of as a layered 
architecture (yes, even more layers!) to simplify understanding. The layer concept helps 
in the task of developing applications for internetworks. The layering also shows how 
the different parts of TCP/IP work together. The more logical structure brought about 
by using a layering process has already been seen in the first chapter for the OSI model, 
so applying it to the Internet makes sense. Be careful to think of these layers as 
conceptual only; they are not really physical or software layers as such (unlike the 
OSI or TCP/IP layers). 

It is convenient to think of the Internet as having four layers. This layered Internet 

file:///D|/UncleVan/Current/Teach%20Yourself%20TCP-IP%20in%2014%20Days%202nd%20Edition/02tyt04.gif


architecture is shown in Figure 2.5. These layers should not be confused with the 
architecture of each machine, as described in the OSI seven-layer model. Instead, they 
are a method of seeing how the internetwork, network, TCP/IP, and the individual 
machines work together. Independent machines reside in the subnetwork layer at the 
bottom of the architecture, connected together in a local area network (LAN) and 
referred to as the subnetwork, a term you saw in the last section. 

Figure 2.5. The Internet architecture. 

On top of the subnetwork layer is the internetwork layer, which provides the 
functionality for communications between networks through gateways. Each 
subnetwork uses gateways to connect to the other subnetworks in the internetwork. 
The internetwork layer is where data gets transferred from gateway to gateway until 
it reaches its destination and then passes into the subnetwork layer. The internetwork 
layer runs the Internet Protocol (IP). 

The service provider protocol layer is responsible for the overall end-to-end 
communications of the network. This is the layer that runs the Transmission Control 
Protocol (TCP) and other protocols. It handles the data traffic flow itself and ensures 
reliability for the message transfer. 

The top layer is the application services layer, which supports the interfaces to the user 
applications. This layer interfaces to electronic mail, remote file transfers, and remote 
access. Several protocols are used in this layer, many of which you will read about 
later. 

To see how the Internet architecture model works, a simple example is useful. Assume 
that an application on one machine wants to transfer a datagram to an application on 
another machine in a different subnetwork. Without all the signals between layers, and 
simplifying the architecture a little, the process is shown in Figure 2.6. The layers in the 
sending and receiving machines are the OSI layers, with the equivalent Internet 
architecture layers indicated. 

Figure 2.6. Transfer of a datagram over an internetwork. 

The data is sent down the layers of the sending machine, assembling the datagram with 
the Protocol Control Information (PCI) as it goes. From the physical layer, the datagram 
(which is sometimes called a frame after the data link layer has added its header and 
trailing information) is sent out to the local area network. The LAN routes the 
information to the gateway out to the internetwork. During this process, the LAN has 
no concern about the message contained in the datagram. Some networks, however, alter 
the header information to show, among other things, the machines it has passed through. 

From the gateway, the frame passes from gateway to gateway along the internetwork 
until it arrives at the destination subnetwork. At each step, the gateway analyzes the 
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datagram's header to determine if it is for the subnetwork the gateway leads to. If not, 
it routes the datagram back out over the internetwork. This analysis is performed in the 
physical layer, eliminating the need to pass the frame up and down through different 
layers on each gateway. The header can be altered at each gateway to reflect its 
routing path. 

When the datagram is finally received at the destination subnetwork's gateway, the 
gateway recognizes that the datagram is at its correct subnetwork and routes it into 
the LAN and eventually to the target machine. The routing is accomplished by reading 
the header information. When the datagram reaches the destination machine, it passes up 
through the layers, with each layer stripping off its PCI header and then passing the 
result on up. At long last, the application layer on the destination machine processes 
the final header and passes the message to the correct application. 

If the datagram was not data to be processed but a request for a service, such as a remote 
file transfer, the correct layer on the destination machine would decode the request 
and route the file back over the internetwork to the original machine. Quite a process! 

Internetwork Problems

Not everything goes smoothly when transferring data from one subnetwork to another. 
All manner of problems can occur, despite the fact that the entire network is using one 
protocol. A typical problem is a limitation on the size of the datagram. The sending 
network might support datagrams of 1,024 bytes, but the receiving network might use 
only 512-byte datagrams (because of a different hardware protocol, for example). This is 
where the processes of segmentation, separation, reassembly, and concatenation 
(explained in the last chapter) become important. 

The actual addressing methods used by the different subnetworks can cause conflicts 
when routing datagrams. Because communicating subnetworks might not have the same 
network control software, the network-based header information might differ, despite 
the fact that the communications methods are based on TCP/IP. An associated problem 
occurs when dealing with the differences between physical and logical machine names. 
In the same manner, a network that requires encryption instead of clear-text datagrams 
can affect the decoding of header information. Therefore, differences in the security 
implemented on the subnetworks can affect datagram traffic. These differences can all 
be resolved with software, but the problems associated with addressing methods can 
become considerable. 

Another common problem is the different networks' tolerance for timing problems. Time-
out and retry values might differ, so when two subnetworks are trying to establish 
communication, one might have given up and moved on to another task while the second 
is still waiting patiently for an acknowledgment signal. Also, if two subnetworks are 



communicating properly and one gets busy and has to pause the communications process 
for a short while, the amount of time before the other network assumes a disconnection 
and gives up might be important. Coordinating the timing over the internetwork can 
become very complicated. 

Routing methods and the speed of the machines on the network can also affect the 
internetwork's performance. If a gateway is managed by a particularly slow machine, the 
traffic coming through the gateway can back up, causing delays and incomplete 
transmissions for the entire internetwork. Developing an internetwork system that can 
dynamically adapt to loads and reroute datagrams when a bottleneck occurs is very 
important. 

There are other factors to consider, such as network management and troubleshooting 
information, but you should begin to see that simply connecting networks together 
without due thought does not work. The many different network operating systems and 
hardware platforms require a logical, well-developed approach to the internetwork. 
This is outside the scope of TCP/IP, which is simply concerned with the transmission of the 
datagrams. The TCP/IP implementations on each platform, however, must be able to 
handle the problems mentioned. 

Internet Addresses

Network addresses are analogous to mailing addresses in that they tell a system where 
to deliver a datagram. Three terms commonly used in the Internet relate to addressing: 
name, address, and route. 

The term address is often generically used with 
communications protocols to refer to many different things. It 
can mean the destination, a port of a machine, a memory 
location, an application, and more. Take care when you 
encounter the term to make sure you know what it is really 
referring to. 

A name is a specific identification of a machine, a user, or an application. It is usually 
unique and provides an absolute target for the datagram. An address typically identifies 
where the target is located, usually its physical or logical location in a network. A 
route tells the system how to get a datagram to the address. 



You use the recipient's name often, either specifying a user name or a machine name, and 
an application does the same thing transparently to you. From the name, a network 
software package called the name server tries to resolve the address and the route, 
making that aspect unimportant to you. When you send electronic mail, you simply 
indicate the recipient's name, relying on the name server to figure out how to get the 
mail message to them. 

Using a name server has one other primary advantage besides making the addressing and 
routing unimportant to the end user: It gives the system or network administrator a lot 
of freedom to change the network as required, without having to tell each user's 
machine about any changes. As long as an application can access the name server, any 
routing changes can be ignored by the application and users. 

Naming conventions differ depending on the platform, the network, and the software 
release, but following is a typical Ethernet-based Internet subnetwork as an example. 
There are several types of addressing you need to look at, including the LAN system, as 
well as the wider internetwork addressing conventions. 

Subnetwork Addressing

On a single network, several pieces of information are necessary to ensure the correct 
delivery of data. The primary components are the physical address and the data link 
address. 

The Physical Address

Each device on a network that communicates with others has a unique physical address, 
sometimes called the hardware address. On any given network, there is only one 
occurrence of each address; otherwise, the name server has no way of identifying the 
target device unambiguously. For hardware, the addresses are usually encoded into a 
network interface card, set either by switches or by software. With respect to the OSI 
model, the address is located in the physical layer. 

In the physical layer, the analysis of each incoming datagram (or protocol data unit) is 
performed. If the recipient's address matches the physical address of the device, the 
datagram can be passed up the layers. If the addresses don't match, the datagram is 
ignored. Keeping this analysis in the bottom layer of the OSI model prevents unnecessary 
delays, because otherwise the datagram would have to be passed up to other layers for 
analysis. 



The length of the physical address varies depending on the networking system, but 
Ethernet and several others use 48 bits in each address. For communication to occur, two 
addresses are required: one each for the sending and receiving devices. 

The IEEE is now handling the task of assigning universal physical addresses for 
subnetworks (a task previously performed by Xerox, as they developed Ethernet). For 
each subnetwork, the IEEE assigns an organization unique identifier (OUI) that is 24 bits 
long, enabling the organization to assign the other 24 bits however it wants. (Actually, 
two of the 24 bits assigned as an OUI are control bits, so only 22 bits identify the 
subnetwork. Because this provides 222 combinations, it is possible to run out of OUIs in the 
future if the current rate of growth is sustained.) 

The format of the OUI is shown in Figure 2.7. The least significant bit of the address (the 
lowest bit number) is the individual or group address bit. If the bit is set to 0, the address 
refers to an individual address; a setting of 1 means that the rest of the address field 
identifies a group address that needs further resolution. If the entire OUI is set to 1s, 
the address has a special meaning which is that all stations on the network are assumed 
to be the destination. 

Figure 2.7. Layout of the organization unique identifier. 

The second bit is the local or universal bit. If set to zero, it has been set by the universal 
administration body. This is the setting for IEEE-assigned OUIs. If it has a value of 1, the 
OUI has been locally assigned and would cause addressing problems if decoded as an IEEE-
assigned address. 

The remaining 22 bits make up the physical address of the subnetwork, as assigned by the 
IEEE. The second set of 24 bits identifies local network addresses and is administered 
locally. If an organization runs out of physical addresses (there are about 16 million 
addresses possible from 24 bits), the IEEE has the capacity to assign a second subnetwork 
address. 

The combination of 24 bits from the OUI and 24 locally assigned bits is called a media 
access control (MAC) address. When a packet of data is assembled for transfer across an 
internetwork, there are two sets of MACs: one from the sending machine and one for the 
receiving machine. 

The Data Link Address

The IEEE Ethernet standards (and several other allied standards) use another address 
called the link layer address (abbreviated as LSAP for link service access point). The 
LSAP identifies the type of link protocol used in the data link layer. As with the 
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physical address, a datagram carries both sending and receiving LSAPs. The IEEE also 
enables a code that identifies the EtherType assignment, which identifies the upper layer 
protocol (ULP) running on the network (almost always a LAN). 

Ethernet Frames

The layout of information in each transmitted packet of data differs depending on the 
protocol, but it is helpful to examine one to see how the addresses and related 
information are prepended to the data. This section uses the Ethernet system as an 
example because of its wide use with TCP/IP. It is quite similar to other systems as well. 

A typical Ethernet frame (remember that a frame is the term for a network-ready 
datagram) is shown in Figure 2.8. The preamble is a set of bits that are used primarily to 
synchronize the communication process and account for any random noise in the first 
few bits that are sent. At the end of the preamble is a sequence of bits that are the start 
frame delimiter (SFD), which indicates that the frame follows immediately. 

Figure 2.8. The Ethernet frame. 

The recipient and sender addresses follow in IEEE 48-bit format, followed by a 16-bit 
type indicator that is used to identify the protocol. The data follows the type indicator. 
The Data field is between 46 and 1,500 bytes in length. If the data is less than 46 bytes, it 
is padded with 0s until it is 46 bytes long. Any padding is not counted in the calculations 
of the data field's total length, which is used in one part of the IP header. The next 
chapter covers IP headers. 

At the end of the frame is the cyclic redundancy check (CRC) count, which is used to 
ensure that the frame's contents have not been modified during the transmission process. 
Each gateway along the transmission route calculates a CRC value for the frame and 
compares it to the value at the end of the frame. If the two match, the frame can be sent 
farther along the network or into the subnetwork. If they differ, a modification to the 
frame must have occurred, and the frame is discarded (to be later retransmitted by the 
sending machine when a timer expires). 

In some protocols, such as the IEEE 802.3, the overall layout of the frame is the same, 
with slight variations in the contents. With 802.3, the 16 bits used by Ethernet to 
identify the protocol type are replaced with a 16-bit value for the length of the data 
block. Also, the data area itself is prepended by a new field. 

IP Addresses
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TCP/IP uses a 32-bit address to identify a machine on a network and the network to which 
it is attached. IP addresses identify a machine's connection to the network, not the 
machine itself—an important distinction. Whenever a machine's location on the network 
changes, the IP address must be changed, too. The IP address is the set of numbers many 
people see on their workstations or terminals, such as 127.40.8.72, which uniquely 
identifies the device. 

IP (or Internet) addresses are assigned only by the Network Information Center (NIC), 
although if a network is not connected to the Internet, that network can determine its 
own numbering. For all Internet accesses, the IP address must be registered with the NIC. 

There are four formats for the IP address, with each used depending on the size of the 
network. The four formats, called Class A through Class D, are shown in Figure 2.9. The 
class is identified by the first few bit sequences, shown in the figure as one bit for Class 
A and up to four bits for Class D. The class can be determined from the first three (high-
order) bits. In fact, in most cases, the first two bits are enough, because there are few 
Class D networks. 

Figure 2.9. The four IP address class structures. 

Class A addresses are for large networks that have many machines. The 24 bits for the 
local address (also frequently called the host address) are needed in these cases. The 
network address is kept to 7 bits, which limits the number of networks that can be 
identified. Class B addresses are for intermediate networks, with 16-bit local or host 
addresses and 14-bit network addresses. Class C networks have only 8 bits for the local 
or host address, limiting the number of devices to 256. There are 21 bits for the network 
address. Finally, Class D networks are used for multicasting purposes, when a general 
broadcast to more than one device is required. The lengths of each section of the IP 
address have been carefully chosen to provide maximum flexibility in assigning both 
network and local addresses. 

IP addresses are four sets of 8 bits, for a total 32 bits. You often represent these bits as 
separated by a period for convenience, so the IP address format can be thought of as 
network.local.local.local for Class A or network.network.network.local for Class C. 
The IP addresses are usually written out in their decimal equivalents, instead of the 
long binary strings. This is the familiar host address number that network users are used 
to seeing, such as 147.10.13.28, which would indicate that the network address is 147.10 
and the local or host address is 13.28. Of course, the actual address is a set of 1s and 0s. 
The decimal notation used for IP addresses is properly called dotted quad notation—a bit of 
trivia for your next dinner party. 

The IP addresses can be translated to common names and letters. This can pose a problem, 
though, because there must be some method of unambiguously relating the physical 
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address, the network address, and a language-based name (such a tpci_ws_4 or 
bobs_machine). The section later in this chapter titled "The Domain Name System" looks 
at this aspect of address naming. 

From the IP address, a network can determine if the data is to be sent out through a 
gateway. If the network address is the same as the current address (routing to a local 
network device, called a direct host), the gateway is avoided, but all other network 
addresses are routed to a gateway to leave the local network (indirect host). The 
gateway receiving data to be transmitted to another network must then determine the 
routing from the data's IP address and an internal table that provides routing 
information. 

As mentioned, if an address is set to all 1s, the address applies to all addresses on the 
network. (See the previous section titled "Physical Addresses.") The same rule applies to 
IP addresses, so that an IP address of 32 1s is considered a broadcast message to all 
networks and all devices. It is possible to broadcast to all machines in a network by 
altering the local or host address to all 1s, so that the address 147.10.255.255 for a 
Class B network (identified as network 147.10) would be received by all devices on that 
network (255.255 being the local addresses composed of all 1s), but the data would not 
leave the network. 

There are two contradictory ways to indicate broadcasts. The later versions of TCP/IP 
use 1s, but earlier BSD systems use 0s. This causes a lot of confusion. All the devices on a 
network must know which broadcast convention is used; otherwise, datagrams can be 
stuck on the network forever! 

A slight twist is coding the network address as all 0s, which means the originating 
network or the local address being set to 0s, which refers to the originating device only 
(usually used only when a device is trying to determine its IP address). The all-zero 
network address format is used when the network IP address is not known but other 
devices on the network can still interpret the local address. If this were transmitted to 
another network, it could cause confusion! By convention, no local device is given a 
physical address of 0. 

It is possible for a device to have more than one IP address if it is connected to more than 
one network, as is the case with gateways. These devices are called multihomed, because 
they have a unique address for each network they are connected to. In practice, it is best 
to have a dedicate machine for a multihomed gateway; otherwise, the applications on 
that machine can get confused as to which address they should use when building 
datagrams. 

Two networks can have the same network address if they are connected by a gateway. 
This can cause problems for addressing, because the gateway must be able to 
differentiate which network the physical address is on. This problem is looked at again in 
the next section, showing how it can be solved. 



Address Resolution Protocol

Determining addresses can be difficult because every machine on the network might not 
have a list of all the addresses of the other machines or devices. Sending data from one 
machine to another if the recipient machine's physical address is not known can cause a 
problem if there is no resolution system for determining the addresses. Having to 
constantly update a table of addresses on each machine would be a network 
administration nightmare. The problem is not restricted to machine addresses within a 
small network, because if the remote destination network addresses are unknown, 
routing and delivery problems will also occur. 

The Address Resolution Protocol (ARP) helps solve these problems. ARP's job is to 
convert IP addresses to physical addresses (network and local) and in doing so, eliminate 
the need for applications to know about the physical addresses. Essentially, ARP is a 
table with a list of the IP addresses and their corresponding physical addresses. The 
table is called an ARP cache. The layout of an ARP cache is shown in Figure 2.10. Each 
row corresponds to one device, with four pieces of information for each device: 

Figure 2.10. The ARP cache address translation table layout. 

●     IF Index: The physical port (interface) 

●     Physical Address: The physical address of the device 

●     IP Address: The IP address corresponding to the physical address 

●     Type: The type of entry in the ARP cache 

Mapping Types

The mapping type is one of four possible values indicating the status of the entry in the 
ARP cache. A value of 2 means the entry is invalid; a value of 3 means the mapping is 
dynamic (the entry can change); a value of 4 means static (the entry doesn't change); 
and a value of 1 means none of the above. 

When the ARP receives a recipient device's IP address, it searches the ARP cache for a 
match. If it finds one, it returns the physical address. If the ARP cache doesn't find a 
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match for an IP address, it sends a message out on the network. The message, called an 
ARP request, is a broadcast that is received by all devices on the local network. (You 
might remember that a broadcast has all 1s in the address.) The ARP request contains the 
IP address of the intended recipient device. If a device recognizes the IP address as 
belonging to it, the device sends a reply message containing its physical address back to 
the machine that generated the ARP request, which places the information into its ARP 
cache for future use. In this manner, the ARP cache can determine the physical address 
for any machine based on its IP address. 

Whenever an ARP request is received by an ARP cache, it uses the information in the 
request to update its own table. Thus, the system can accommodate changing physical 
addresses and new additions to the network dynamically without having to generate an 
ARP request of its own. Without the use of an ARP cache, all the ARP requests and 
replies would generate a lot of network traffic, which can have a serious impact on 
network performance. Some simpler network schemes abandon the cache and simply use 
broadcast messages each time. This is feasible only when the number of devices is low 
enough to avoid network traffic problems. 

The layout of the ARP request is shown in Figure 2.11. When an ARP request is sent, all 
fields in the layout are used except the Recipient Hardware Address (which the request 
is trying to identify). In an ARP reply, all the fields are used. 

Figure 2.11. The ARP request and ARP reply layout. 

This layout, which is combined with the network system's protocols into a protocol data 
unit (PDU), has several fields. The fields and their purposes are as follows: 

●     Hardware Type: The type of hardware interface 

●     Protocol Type: The type of protocol the sending device is using 

●     Hardware Address Length: The length of each hardware address in the datagram, 
given in bytes 

●     Protocol Address Length: The length of the protocol address in the datagram, 
given in bytes 

●     Operation Code (Opcode): The Opcode indicates whether the datagram is an ARP 
request or an ARP reply. If the datagram is a request, the value is set to 1. If it is a 
reply, the value is set to 2. 

●     Sender Hardware Address: The hardware address of the sending device 

●     Sender IP Address: The IP address of the sending device 

●     Recipient IP Address: The IP Address of the recipient 
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●     Recipient Hardware Address: The hardware address of the recipient device 

Some of these fields need a little more explanation to show their legal values and field 
usage. The following sections describe these fields in more detail. 

The Hardware Type Field

The hardware type identifies the type of hardware interface. Legal values are as 
follows: 

Type Description 

1 Ethernet 

2 Experimental Ethernet 

3 X.25 

4 Proteon ProNET (Token Ring) 

5 Chaos 

6 IEEE 802.X 

7 ARCnet 

The Protocol Type Field

The protocol type identifies the type of protocol the sending device is using. With TCP/IP, 
these protocols are usually an EtherType, for which the legal values are as follows: 

Decimal Description 

512 XEROX PUP 

513 PUP Address Translation 

1536 XEROX NS IDP 



2048 Internet Protocol (IP) 

2049 X.75 

2050 NBS 

2051 ECMA 

2052 Chaosnet 

2053 X.25 Level 3 

2054 Address Resolution Protocol (ARP) 

2055 XNS 

4096 Berkeley Trailer 

21000 BBN Simnet 

24577 DEC MOP Dump/Load 

24578 DEC MOP Remote Console 

24579 DEC DECnet Phase IV 

24580 DEC LAT 

24582 DEC 

24583 DEC 

32773 HP Probe 

32784 Excelan 

32821 Reverse ARP 

32824 DEC LANBridge 

32823 AppleTalk 

If the protocol is not EtherType, other values are allowed. 

ARP and IP Addresses

Two (or more) networks connected by a gateway can have the same network address. The 
gateway has to determine which network the physical address or IP address corresponds 
with. The gateway can do this with a modified ARP, called the Proxy ARP (sometimes 



called Promiscuous ARP). A proxy ARP creates an ARP cache consisting of entries from 
both networks, with the gateway able to transfer datagrams from one network to the 
other. The gateway has to manage the ARP requests and replies that cross the two 
networks. 

An obvious flaw with the ARP system is that if a device doesn't know its own IP address, 
there is no way to generate requests and replies. This can happen when a new device 
(typically a diskless workstation) is added to the network. The only address the device is 
aware of is the physical address set either by switches on the network interface or by 
software. A simple solution is the Reverse Address Resolution Protocol (RARP), which 
works the reverse of ARP, sending out the physical address and expecting back an IP 
address. The reply containing the IP address is sent by an RARP server, a machine that 
can supply the information. Although the originating device sends the message as a 
broadcast, RARP rules stipulate that only the RARP server can generate a reply. (Many 
networks assign more than one RARP server, both to spread the processing load and to 
act as a backup in case of problems.) 

The Domain Name System

Instead of using the full 32-bit IP address, many systems adopt more meaningful names for 
their devices and networks. Network names usually reflect the organization's name 
(such as tpci.com and bobs_cement). Individual device names within a network can range 
from descriptive names on small networks (such as tims_machine and laser_1) to more 
complex naming conventions on larger networks (such as hpws_23 and tpci704). 
Translating between these names and the IP addresses would be practically impossible on 
an Internet-wide scale. 

To solve the problem of network names, the Network Information Center (NIC) maintains 
a list of network names and the corresponding network gateway addresses. This system 
grew from a simple flat-file list (which was searched for matches) to a more complicated 
system called the Domain Name System (DNS) when the networks became too numerous 
for the flat-file system to function efficiently. 

DNS uses a hierarchical architecture, much like the UNIX filesystem. The first level of 
naming divides networks into the category of subnetworks, such as com for commercial, 
mil for military, edu for education, and so on. Below each of these is another division 
that identifies the individual subnetwork, usually one for each organization. This is 
called the domain name and is unique. The organization's system manager can further 
divide the company's subnetworks as desired, with each network called a subdomain. For 
example, the system merlin.abc_corp.com has the domain name abc_corp.com, whereas the 
network merlin.abc_corp is a subdomain of merlin.abc_corp.com. A network can be 
identified with an absolute name (such as merlin.abc_corp.com) or a relative name (such as 



merlin) that uses part of the complete domain name. 

Seven first-level domain names have been established by the NIC so far. These are as 
follows: 

.arpa An ARPANET-Internet identification 

.com Commercial company 

.edu Educational institution 

.gov Any governmental body 

.mil Military 

.net Networks used by Internet Service Providers 

.org Anything that doesn't fall into one of the other categories 

The NIC also allows for a country designator to be appended. There are designators for 
all countries in the world, such as .ca for Canada and .uk for the United Kingdom. 

DNS uses two systems to establish and track domain names. A name resolver on each 
network examines information in a domain name. If it can't find the full IP address, it 
queries a name server, which has the full NIC information available. The name resolver 
tries to complete the addressing information using its own database, which it updates in 
much the same manner as the ARP system (discussed earlier) when it must query a name 
server. If a queried name server cannot resolve the address, it can query another name 
server, and so on, across the entire internetwork. 

There is a considerable amount of information stored in the name resolver and name 
server, as well as a whole set of protocols for querying between the two. The details, 
luckily, are not important to an understanding of TCP/IP, although the overall concept 
of the address resolution is important when understanding how the Internet translates 
between domain names and IP addresses. 

Summary

In this chapter you have seen the relationship of OSI and TCP/IP layered architectures, a 
history of TCP/IP and the Internet, the structure of the Internet, Internet and IP 
addresses, and the Address Resolution Protocol. Using these concepts, you can now move 
on to look at the TCP/IP family of protocols in more detail. 



The next chapter begins with the Internet Protocol (IP), showing how it is used and the 
format of its header information. The rest of the chapter covers gateway information 
necessary to piece together the rest of the protocols. Gateways are also revisited on 
Day 5. 

Q&A

Explain the role of gateways in internetworks. 

Gateways act as a relay between networks, passing datagrams from network to network 
searching for a destination address. Networks talk to each other through gateways. 

Expand the following TCP/IP protocol acronyms: DNS, SNMP, NFS, RPC, TFTP. 

DNS is the Domain Name Server, which allows a common name to be used instead of an IP 
address. SNMP is the Simple Network Management Protocol, used to provide information 
about devices. NFS is the Network File System, a protocol that allows machines to access 
other file systems as if they were part of their own. RPC is the Remote Procedure Call 
protocol that allows applications to communicate. TFTP is the Trivial File Transfer 
Protocol, a simple file transfer system with no security. 

Name the Internet's advisory bodies. 

The Internet Advisory Board (IAB) controls the Internet. The Internet Engineering Task 
Force (IETF) handles implementations of protocols on the Internet, and the Internet 
Research Task Force (IRTF) handles research. 

What does ARP do? 

The Address Resolution Protocol converts IP addresses to physical device addresses. 

What are the four IP address class structures and their structure? 

Class A for large networks: Network address is 7 bits, local address is 24 bits. Class B for 
midsize networks: Network address is 14 bits, local address is 16 bits. Class C for small 
networks: Network address is 21 bits, local address is 8 bits. Class D for multicast 
addresses, using 28 bits. Class D networks are seldom encountered. 

Quiz



1.  Draw the layered architectures of both the OSI Reference Model and TCP/IP. 
Show how the layers correspond in each diagram. 

2.  Show the layered Internet architecture, explaining each layer's purpose. 

3.  Show how a datagram is transferred from one network, through one or more 
gateways, to the destination network. In each device, show the layered 
architecture and how high up the layered structure the datagrams goes. 

4.  Draw the IP header and an Ethernet frame, showing the number of bits used for 
each component. Explain each component's role. 

5.  Explain what an ARP cache is. What is its structure and why is it used? 
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The Internet Protocol (IP)

Yesterday I looked at the history of TCP/IP and the Internet in some detail. Today I 
move on to the first of the two important protocol elements of TCP/IP: the Internet 
Protocol, the "IP" part of TCP/IP. A good understanding of IP is necessary to continue on 
to TCP and UDP, because the IP is the component that handles the movement of 
datagrams across a network. Knowing how a datagram must be assembled and how it is 
moved through the networks helps you understand how the higher-level layers work 
with IP. For almost all protocols in the TCP/IP family, IP is the essential element that 
packages data and ensures that it is sent to its destination. 

This chapter contains, unfortunately, even more detail on headers, protocols, and 
messaging than you saw in the last couple of days. This level of information is necessary 
in order for you to deal with understanding the applications and their interaction with 
IP, as well as troubleshooting the system. Although I don't go into exhaustive detail, 
there is enough here that you can refer back to this chapter whenever needed. 

As with many of the subjects I look at in this book, don't assume that this chapter covers 
everything there is to know about IP. There are many books written on IP alone, going 
into each facet of the protocol and its functionality. Luckily, most of the details are 
transparent to you, and there is little advantage gained in knowing it. For that reason, 
I simplify the subject a little, still providing enough detail for you to see how IP works 
and what it does. 

Internet Protocol

The Internet Protocol (IP) is a primary protocol of the OSI model, as well as an integral 
part of TCP/IP (as the name suggests). Although the word "Internet" appears in the 
protocol's name, it is not restricted to use with the Internet. It is true that all machines 
on the Internet can use or understand IP, but IP can also be used on dedicated networks 
that have no relation to the Internet at all. IP defines a protocol, not a connection. 



Indeed, IP is a very good choice for any network that needs an efficient protocol for 
machine-to-machine communications, although it faces some competition from protocols 
like Novell NetWare's IPX on small to medium local area networks that use NetWare as 
a PC server operating system. 

What does IP do? Its main tasks are addressing of datagrams of information between 
computers and managing the fragmentation process of these datagrams. The protocol 
has a formal definition of the layout of a datagram of information and the formation of 
a header composed of information about the datagram. IP is responsible for the routing 
of a datagram, determining where it will be sent, and devising alternate routes in case 
of problems. 

Another important aspect of IP's purpose has to do with unreliable delivery of a 
datagram. Unreliable in the IP sense means that the delivery of the datagram is not 
guaranteed, because it can get delayed, misrouted, or mangled in the breakdown and 
reassembly of message fragments. IP has nothing to do with flow control or reliability: 
there is no inherent capability to verify that a sent message is correctly received. IP 
does not have a checksum for the data contents of a datagram, only for the header 
information. The verification and flow control tasks are left to other components in 
the layer model. (For that matter, IP doesn't even properly handle the forwarding of 
datagrams. IP can make a guess as to the best routing to move a datagram to the next 
node along a path, but it does not inherently verify that the chosen path is the fastest 
or most efficient route.) Part of the IP system defines how gateways manage datagrams, 
how and when they should produce error messages, and how to recover from problems 
that might arise. 

In the first chapter, you saw how data can be broken into smaller sections for 
transmission and then reassembled at another location, a process called fragmentation 
and reassembly. IP provides for a maximum packet size of 65,535 bytes, which is much 
larger than most networks can handle, hence the need for fragmentation. IP has the 
capability to automatically divide a datagram of information into smaller datagrams if 
necessary, using the principles you saw in Day 1. 

When the first datagram of a larger message that has been divided into fragments 
arrives at the destination, a reassembly timer is started by the receiving machine's IP 
layer. If all the pieces of the entire datagram are not received when the timer reaches a 
predetermined value, all the datagrams that have been received are discarded. The 
receiving machine knows the order in which the pieces are to be reassembled because of a 
field in the IP header. One consequence of this process is that a fragmented message has 
a lower chance of arrival than an unfragmented message, which is why most 
applications try to avoid fragmentation whenever possible. 

IP is connectionless, meaning that it doesn't worry about which nodes a datagram passes 
through along the path, or even at which machines the datagram starts and ends. This 
information is in the header, but the process of analyzing and passing on a datagram has 



nothing to do with IP analyzing the sending and receiving IP addresses. IP handles the 
addressing of a datagram with the full 32-bit Internet address, even though the 
transport protocol addresses use 8 bits. A new version of IP, called version 6 or IPng (IP 
Next Generation) can handle much larger headers, as you will see toward the end of 
today's material in the section titled "IPng: IP Version 6." 

The Internet Protocol Datagram Header

It is tempting to compare IP to a hardware network such as Ethernet because of the basic 
similarities in packaging information. Yesterday you saw how Ethernet assembles a 
frame by combining the application data with a header block containing address 
information. IP does the same, except the contents of the header are specific to IP. When 
Ethernet receives an IP-assembled datagram (which includes the IP header), it adds its 
header to the front to create a frame—a process called encapsulation. One of the primary 
differences between the IP and Ethernet headers is that Ethernet's header contains the 
physical address of the destination machine, whereas the IP header contains the IP 
address. You might recall from yesterday's discussion that the translation between the 
two addresses is performed by the Address Resolution Protocol. 

Encapsulation is the process of adding something to the 
start (and sometimes the end) of data, just as a pill capsule 
holds the medicinal contents. The added header and tail give 
details about the enclosed data. 

The datagram is the transfer unit used by IP, sometimes more specifically called an 
Internet datagram, or IP datagram. The specifications that define IP (as well as most of 
the other protocols and services in the TCP/IP family of protocols) define headers and 
tails in terms of words, where a word is 32 bits. Some operating systems use a different 
word length, although 32 bits per word is the more-often encountered value (some 
minicomputers and larger systems use 64 bits per word, for example). There are eight bits 
to a byte, so a 32-bit word is the same as four bytes on most systems. 

The IP header is six 32-bit words in length (24 bytes total) when all the optional fields 
are included in the header. The shortest header allowed by IP uses five words (20 bytes 
total). To understand all the fields in the header, it is useful to remember that IP has 
no hardware dependence but must account for all versions of IP software it can 
encounter (providing full backward-compatibility with previous versions of IP). The IP 
header layout is shown schematically in Figure 3.1. The different fields in the IP header 



are examined in more detail in the following subsections. 

Figure 3.1. The IP header layout. 

Version Number

This is a 4-bit field that contains the IP version number the protocol software is using. 
The version number is required so that receiving IP software knows how to decode the 
rest of the header, which changes with each new release of the IP standards. The most 
widely used version is 4, although several systems are now testing version 6 (called 
IPng). The Internet and most LANs do not support IP version 6 at present. 

Part of the protocol definition stipulates that the receiving software must first check 
the version number of incoming datagrams before proceeding to analyze the rest of the 
header and encapsulated data. If the software cannot handle the version used to build 
the datagram, the receiving machine's IP layer rejects the datagram and ignores the 
contents completely. 

Header Length

This 4-bit field reflects the total length of the IP header built by the sending machine; 
it is specified in 32-bit words. The shortest header is five words (20 bytes), but the use of 
optional fields can increase the header size to its maximum of six words (24 bytes). To 
properly decode the header, IP must know when the header ends and the data begins, 
which is why this field is included. (There is no start-of-data marker to show where the 
data in the datagram begins. Instead, the header length is used to compute an offset 
from the start of the IP header to give the start of the data block.) 

Type of Service

The 8-bit (1 byte) Service Type field instructs IP how to process the datagram properly. 
The field's 8 bits are read and assigned as shown in Figure 3.2, which shows the layout of 
the Service Type field inside the larger IP header shown in Figure 3.1. The first 3 bits 
indicate the datagram's precedence, with a value from 0 (normal) through 7 (network 
control). The higher the number, the more important the datagram and, in theory at 
least, the faster the datagram should be routed to its destination. In practice, though, 
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most implementations of TCP/IP and practically all hardware that uses TCP/IP ignores 
this field, treating all datagrams with the same priority. 

Figure 3.2. The 8-bit Service Type field layout. 

The next three bits are 1-bit flags that control the delay, throughput, and reliability 
of the datagram. If the bit is set to 0, the setting is normal. A bit set to 1 implies low 
delay, high throughput, and high reliability for the respective flags. The last two bits 
of the field are not used. Most of these bits are ignored by current IP implementations, 
and all datagrams are treated with the same delay, throughput, and reliability 
settings. 

For most purposes, the values of all the bits in the Service Type field are set to 0 because 
differences in precedence, delay, throughput, and reliability between machines are 
virtually nonexistent unless a special network has been established. Although these 
flags would be useful in establishing the best routing method for a datagram, no 
currently available UNIX-based IP system bothers to evaluate the bits in these fields. 
(Although it is conceivable that the code could be modified for high security or high 
reliability networks.) 

Datagram Length (or Packet Length) 

This field gives the total length of the datagram, including the header, in bytes. The 
length of the data area itself can be computed by subtracting the header length from 
this value. The size of the total datagram length field is 16 bits, hence the 65,535 bytes 
maximum length of a datagram (including the header). This field is used to determine the 
length value to be passed to the transport protocol to set the total frame length. 

Identification

This field holds a number that is a unique identifier created by the sending node. This 
number is required when reassembling fragmented messages, ensuring that the fragments 
of one message are not intermixed with others. Each chunk of data received by the IP 
layer from a higher protocol layer is assigned one of these identification numbers when 
the data arrives. If a datagram is fragmented, each fragment has the same identification 
number. 

Flags
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The Flags field is a 3-bit field, the first bit of which is left unused (it is ignored by the 
protocol and usually has no value written to it). The remaining two bits are dedicated 
to flags called DF (Don't Fragment) and MF (More Fragments), which control the 
handling of the datagrams when fragmentation is desirable. 

If the DF flag is set to 1, the datagram cannot be fragmented under any circumstances. 
If the current IP layer software cannot send the datagram on to another machine 
without fragmenting it, and this bit is set to 1, the datagram is discarded and an error 
message is sent back to the sending device. 

If the MF flag is set to 1, the current datagram is followed by more packets (sometimes 
called subpackets), which must be reassembled to re-create the full message. The last 
fragment that is sent as part of a larger message has its MF flag set to 0 (off) so that 
the receiving device knows when to stop waiting for datagrams. Because the order of 
the fragments' arrival might not correspond to the order in which they were sent, the 
MF flag is used in conjunction with the Fragment Offset field (the next field in the IP 
header) to indicate to the receiving machine the full extent of the message. 

Fragment Offset

If the MF (More Fragments) flag bit is set to 1 (indicating fragmentation of a larger 
datagram), the fragment offset contains the position in the complete message of the 
submessage contained within the current datagram. This enables IP to reassemble 
fragmented packets in the proper order. 

Offsets are always given relative to the beginning of the message. This is a 13-bit field, 
so offsets are calculated in units of 8 bytes, corresponding to the maximum packet 
length of 65,535 bytes. Using the identification number to indicate which message a 
receiving datagram belongs to, the IP layer on a receiving machine can then use the 
fragment offset to reassemble the entire message. 

Time to Live (TTL)

This field gives the amount of time in seconds that a datagram can remain on the 
network before it is discarded. This is set by the sending node when the datagram is 
assembled. Usually the TTL field is set to 15 or 30 seconds. 



The TCP/IP standards stipulate that the TTL field must be decreased by at least one 
second for each node that processes the packet, even if the processing time is less than 
one second. Also, when a datagram is received by a gateway, the arrival time is tagged so 
that if the datagram must wait to be processed, that time counts against its TTL. Hence, 
if a gateway is particularly overloaded and can't get to the datagram in short order, 
the TTL timer can expire while awaiting processing, and the datagram is abandoned. 

If the TTL field reaches 0, the datagram must be discarded by the current node, but a 
message is sent back to the sending machine when the packet is dropped. The sending 
machine can then resend the datagram. The rules governing the TTL field are designed 
to prevent IP packets from endlessly circulating through networks. 

Transport Protocol

This field holds the identification number of the transport protocol to which the 
packet has been handed. The numbers are defined by the Network Information Center 
(NIC), which governs the Internet. There are currently about 50 protocols defined and 
assigned a transport protocol number. The two most important protocols are ICMP 
(detailed in the section titled "Internet Control Message Protocol (ICMP)" later 
today), which is number 1, and TCP, which is number 6. The full list of numbers is not 
necessary here because most of the protocols are never encountered by users. (If you 
really want this information, it’s in several RFCs mentioned in the apendixes.) 

Header Checksum

The number in this field of the IP header is a checksum for the protocol header field 
(but not the data fields) to enable faster processing. Because the Time to Live (TTL) 
field is decremented at each node, the checksum also changes with every machine the 
datagram passes through. The checksum algorithm takes the ones-complement of the 16-
bit sum of all 16-bit words. 

This is a fast, efficient algorithm, but it misses some unusual corruption circumstances 
such as the loss of an entire 16-bit word that contains only 0s. However, because the 
data checksums used by both TCP and UDP cover the entire packet, these types of errors 
usually can be caught as the frame is assembled for the network transport. 

Sending Address and Destination Address



These fields contain the 32-bit IP addresses of the sending and destination devices. These 
fields are established when the datagram is created and are not altered during the 
routing. 

Options

The Options field is optional, composed of several codes of variable length. If more than 
one option is used in the datagram, the options appear consecutively in the IP header. 
All the options are controlled by a byte that is usually divided into three fields: a 1-bit 
copy flag, a 2-bit option class, and a 5-bit option number. The copy flag is used to 
stipulate how the option is handled when fragmentation is necessary in a gateway. 
When the bit is set to 0, the option should be copied to the first datagram but not 
subsequent ones. If the bit is set to 1, the option is copied to all the datagrams. 

The option class and option number indicate the type of option and its particular value. 
At present, there are only two option classes set. (With only 2 bits to work with in the 
field, a maximum of four options could be set.) When the value is 0, the option applies to 
datagram or network control. A value of 2 means the option is for debugging or 
administration purposes. Values of 1 and 3 are unused. Currently supported values for 
the option class and number are given in Table 3.1. 

Table 3.1. Valid option class and numbers for IP headers.

Option Class Option Number Description 

0 0 Marks the end of the options list 

0 1 No option (used for padding) 

0 2 Security options (military purposes only) 

0 3 Loose source routing 

0 7 Activates routing record (adds fields) 

0 9 Strict source routing 

2 4 Timestamping active (adds fields) 



Of most interest to you are options that enable the routing and timestamps to be 
recorded. These are used to provide a record of a datagram's passage across the 
internetwork, which can be useful for diagnostic purposes. Both these options add 
information to a list contained within the datagram. (The timestamp has an interesting 
format: it is expressed in milliseconds since midnight, Universal Time. Unfortunately, 
because most systems have widely differing time settings—even when corrected to 
Universal Time—the timestamps should be treated with more than a little suspicion.) 

There are two kinds of routing indicated within the Options field: loose and strict. Loose 
routing provides a series of IP addresses that the machine must pass through, but it 
enables any route to be used to get to each of these addresses (usually gateways). Strict 
routing enables no deviations from the specified route. If the route can't be followed, the 
datagram is abandoned. Strict routing is frequently used for testing routes but rarely 
for transmission of user datagrams because of the higher chances of the datagram being 
lost or abandoned. 

Padding

The content of the padding area depends on the options selected. The padding is usually 
used to ensure that the datagram header is a round number of bytes. 

A Datagram's Life

To understand how IP and other TCP/IP layers work to package and send a datagram 
from one machine to another, I take a simplified look at a typical datagram's passage. 
When an application must send a datagram out on the network, it performs a few simple 
steps. First, it constructs the IP datagram within the legal lengths stipulated by the 
local IP implementation. The checksum is calculated for the data, and then the IP 
header is constructed. Next, the first hop (machine) of the route to the destination must 
be determined to route the datagram to the destination machine directly over the local 
network, or to a gateway if the internetwork is used. If routing is important, this 
information is added to the header using an option. Finally, the datagram is passed to 
the network for its manipulation of the datagram. 

As a datagram passes along the internetwork, each gateway performs a series of tests. 
After the network layer has stripped off its own header, the gateway IP layer 
calculates the checksum and verifies the integrity of the datagram. If the checksums 
don't match, the datagram is discarded and an error message is returned to the sending 
device. Next, the TTL field is decremented and checked. If the datagram has expired, it is 



discarded and an error message is sent back to the sending machine. After determining 
the next hop of the route, either by analysis of the target address or from a specified 
routing instruction within the Options field of the IP header, the datagram is rebuilt 
with the new TTL value and new checksum. 

If fragmentation is necessary because of an increase in the datagram's length or a 
limitation in the software, the datagram is divided, and new datagrams with the correct 
header information are assembled. If a routing or timestamp is required, it is added as 
well. Finally, the datagram is passed back to the network layer. 

When the datagram is finally received at the destination device, the system performs a 
checksum calculation and—assuming the two sums match—checks to see if there are 
other fragments. If more datagrams are required to reassemble the entire message, the 
system waits, meanwhile running a timer to ensure that the datagrams arrive within a 
reasonable time. If all the parts of the larger message have arrived but the device can't 
reassemble them before the timer reaches 0, the datagram is discarded and an error 
message is returned to the sender. Finally, the IP header is stripped off, the original 
message is reconstructed if it was fragmented, and the message is passed up the layers to 
the upper layer application. If a reply was required, it is then generated and sent back 
to the sending device. 

When extra information is added to the datagram for routing or timestamp recording, 
the length of the datagram can increase. Handling all these conditions is part of IP's 
forte, for which practically every problem has a resolution system. 

Internet Control Message Protocol (ICMP)

As you have seen today and over the last two days, many problems can occur in routing 
a message from sender to receiver. The TTL timer might expire; fragmented datagrams 
might not arrive with all segments intact; a gateway might misroute a datagram, and so 
on. Letting the sending device know of a problem with a datagram is important, as is 
correctly handling error conditions within the network routing itself. The Internet 
Control Message Protocol (ICMP) was developed for this task. 

ICMP is an error-reporting system. It is an integral part of IP and must be included in 
every IP implementation. This provides for consistent, understandable error messages 
and signals across the different versions of IP and different operating systems. It is 
useful to think of ICMP as one IP package designed specifically to talk to another IP 
package across the network: in other words, ICMP is the IP layer's communications 
system. Messages generated by ICMP are treated by the rest of the network as any other 
datagram, but they are interpreted differently by the IP layer software. ICMP messages 
have a header built in the same manner as any IP datagram, and ICMP datagrams are not 



differentiated at any point from normal data-carrying datagrams until a receiving 
machine's IP layer processes the datagram properly. 

In almost all cases, error messages sent by ICMP are routed back to the original 
datagram's sending machine. This is because only the sender's and destination device's IP 
addresses are included in the header. Because the error doesn't mean anything to the 
destination device, the sender is the logical recipient of the error message. The sender 
can then determine from the ICMP message the type of error that occurred and 
establish how to best resend the failed datagram. 

ICMP messages go through two encapsulations, as do all IP messages: incorporation into 
a regular IP datagram and then into the network frame. This is shown in Figure 3.3. 
ICMP headers have a different format than IP headers, though, and the format differs 
slightly depending on the type of message. However, all ICMP headers start with the 
same three fields: a message type, a code field, and a checksum for the ICMP message. 
Figure 3.4 shows the layout of the ICMP message. 

Figure 3.3. Two-step encapsulation of an ICMP message. 

Figure 3.4. The layout of an ICMP message. 

Usually, any ICMP message that is reporting a problem with delivery also includes the 
header and first 64 bits of the data field from the datagram for which the problem 
occurred. Including the 64 bits of the original datagram accomplishes two things. First, 
it enables the sending device to match the datagram fragment to the original datagram 
by comparison. Also, because most of the protocols involved are defined at the start of 
the datagram, the inclusion of the original datagram fragment allows for some 
diagnostics to be performed by the machine receiving the ICMP message. 

The 8-bit Message Type field in the ICMP header (shown in Figure 3.4) can have one of 
the values shown in Table 3.2. 

Table 3.2. Valid values for the ICMP Message Type field.

Value Description 

0 Echo Reply 

3 Destination Not Reachable 

4 Source Quench 

5 Redirection Required 

8 Echo Request 
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11 Time to Live Exceeded 

12 Parameter Problem 

13 Timestamp Request 

14 Timestamp Reply 

15 Information Request (now obsolete) 

16 Information Reply (now obsolete) 

17 Address Mask Request 

18 Address Mask Reply 

The Code field expands on the message type, providing a little more information for the 
receiving machine. The checksum in the ICMP header is calculated in the same manner as 
the normal IP header checksum. 

The layout of the ICMP message is slightly different for each type of message. Figure 3.5 
shows the layouts of each type of ICMP message header. The Destination Unreachable 
and Time Exceeded messages are self-explanatory, although they are used in other 
circumstances, too, such as when a datagram must be fragmented but the Don't 
Fragment flag is set. This results in a Destination Unreachable message being returned 
to the sending machine. 

Figure 3.5. ICMP message header layouts. 

The Source Quench ICMP message is used to control the rate at which datagrams are 
transmitted, although this is a very rudimentary form of flow control. When a device 
receives a Source Quench message, it should reduce the transmittal rate over the 
network until the Source Quench messages cease. The messages are typically generated 
by a gateway or host that either has a full receiving buffer or has slowed processing of 
incoming datagrams because of other factors. If the buffer is full, the device is supposed 
to issue a Source Quench message for each datagram that is discarded. Some 
implementations issue Source Quench messages when the buffer exceeds a certain 
percentage to slow down reception of new datagrams and enable the device to clear the 
buffer. 

Redirection messages are sent to a gateway in the path when a better route is available. 
For example, if a gateway has just received a datagram from another gateway but on 
checking its datafiles finds a better route, it sends the Redirection message back to that 
gateway with the IP address of the better route. When a Redirection message is sent, an 
integer is placed in the code field of the header to indicate the conditions for which the 
rerouting applies. A value of 0 means that datagrams for any device on the destination 
network should be redirected. A value of 1 indicates that only datagrams for the 
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specific device should be rerouted. A value of 2 implies that only datagrams for the 
network with the same type of service (read from one of the IP header fields) should be 
rerouted. Finally, a value of 3 reroutes only for the same host with the same type of 
service. 

The Parameter Problem message is used whenever a semantic or syntactic error has been 
encountered in the IP header. This can happen when options are used with incorrect 
arguments. When a Parameter Problem message is sent back to the sending device, the 
Parameter field in the ICMP error message contains a pointer to the byte in the IP 
header that caused the problem. (See Figure 3.5.) 

Echo request or reply messages are commonly used for debugging purposes. When a 
request is sent, a device or gateway down the path sends a reply back to the specified 
device. These request/reply pairs are useful for identifying routing problems, failed 
gateways, or network cabling problems. The simple act of processing an ICMP message 
also acts as a check of the network, because each gateway or device along the path 
must correctly decode the headers and then pass the datagram along. Any failure 
along the way could be with the implementation of the IP software. A commonly used 
request/reply system is the ping command. The ping command sends a series of requests 
and waits for replies. 

Timestamp requests and replies enable the timing of message passing along the network 
to be monitored. When combined with strict routing, this can be useful in identifying 
bottlenecks. Address mask requests and replies are used for testing within a specific 
network or subnetwork. 

IPng: IP Version 6

When IP version 4 (the current release) was developed, the use of a 32-bit IP address 
seemed more than enough to handle the projected use of the Internet. With the 
incredible growth rate of the Internet over the last few years, however, the 32-bit IP 
address might become a problem. To counter this limit, IP Next Generation, usually 
called IP version 6 (IPv6), is under development. 

Several proposals for IPng implementation are currently being studied, the most 
popular of which are TUBA (TCP and UDP with Bigger Addresses), CATNIP (Common 
Architecture for the Internet), and SIPP (Simple Internet Protocol Plus). None of the 
three meet all the proposed changes for version 6, but a compromise or modification 
based on one of these proposals is likely. 

What does IPng have to offer? The list of changes tells you the main features of IPng in 
a nutshell: 



●     128-bit network address instead of 32-bit 

●     More efficient IP header with extensions for applications and options 

●     No header checksum 

●     A flow label for quality-of-service requirements 

●     Prevention of intermediate fragmentation of datagrams 

●     Built-in security for authentication and encryption 

Next I look at IPng in a little more detail to show the changes that affect most users, 
as well as network programmers and network administrators. I start with a look at the 
IPng header. Remember that at present IPng is still under development and is not widely 
deployed except on test networks. 

IPng Datagram

As mentioned earlier, the header for IPng datagrams has been modified over the earlier 
version 4 header. The changes are mostly to provide support for the new, longer 128-bit 
IP addresses and to remove obsolete and unneeded fields. The basic layout of the IPng 
header is shown in Figure 3.6. As you can see, there are quite a few changes from the IP 
header used in IP version 4 (see Figure 3.1). 

Figure 3.6. The IPng header layout. 

The version number in the IP datagram header is four bits long and holds the release 
number (which is 6 with IPng). The Priority field is four bits long and holds a value 
indicating the datagram's priority. The priority is used to define the transmission order. 
The priority is set first with a broad classification, then a narrower identifier within 
each class. I look at the priority classification in a little more detail in a moment. 

The Flow Label field is 24 bits long and is still in the development stage. It is likely to 
be used in combination with the source machine IP address to provide flow identification 
for the network. For example, if you are using a UNIX workstation on the network, the 
flow is different from another machine such as a Windows 95 PC. This field can be used 
to identify flow characteristics and provide some adjustment capabilities. The field can 
also be used to help identify target machines for large transfers, in which case a cache 
system becomes more efficient at routing between source and destination. Flow labels 
are discussed in more detail in the section titled "Flow Labels" later today. 
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The Payload Length field is a 16-bit field used to specify the total length of the IP 
datagram, given in bytes. The total length is exclusive of the IP header itself. The use 
of a 16-bit field limits the maximum value in this field to 65,535, but there is a provision 
to send large datagrams using an extension header (see the section titled "IP Extension 
Headers" later today). 

The Next Header field is used to indicate which header follows the IP header when 
other applications want to piggy-back on the IP header. Several values have been 
defined for the Next Header field, as shown in Table 3.3. 

Table 3.3. IP Next Header field values.

Value Description 

0 Hop-by-hop options 

4 IP 

6 TCP 

17 UDP 

43 Routing 

44 Fragment 

45 Interdomain Routine 

46 Resource Reservation 

50 Encapsulating Security 

51 Authentication 

58 ICMP 

59 No Next Header 

60 Destination Options 

The Hop Limit field determines the number of hops the datagram can travel. With each 
forwarding, the number is decremented by 1. When the Hop Limit field reaches 0, the 
datagram is discarded, just as with IP version 4. 

Finally, the Sending and Destination IP Addresses in 128-bit format are placed in the 
header. I look at the new IP address format in more detail in the section titled "128-Bit 
IP Addresses" later in this chapter. 



Priority Classification

The Priority Classification field in the IPng header first divides the datagram into one 
of two categories: congestion controlled or noncongestion controlled. Noncongestion 
controlled datagrams are always routed as a priority over congestion controlled 
datagrams. There are subclassifications of noncongestion controlled datagram 
priorities available for use, but none of the categories have been accepted as standard 
yet. 

If the datagram is congestion controlled, it is sensitive to congestion problems on the 
network. If congestion occurs, the datagram can be slowed down and held temporarily 
in caches until the problem is alleviated. Beneath the broad congestion controlled 
category are several subclasses that further refine the priority of the datagram. The 
subcategories of congestion controlled priorities are given in Table 3.4. 

Table 3.4. Priorities for congestion controlled datagrams.

Value Meaning 

0 No priority specified 

1 Background traffic 

2 Unattended data transfer 

3 Unassigned 

4 Attended bulk transfer 

5 Unassigned 

6 Interactive traffic 

7 Control traffic 

Noncongestion controlled traffic has priorities 8 through 15 available, but as I 
mentioned earlier, they are not defined. 

Examples of each of the primary subcategories might help you see how the datagrams are 
prioritized. Routing and network management traffic that is considered highest priority 
is assigned category 7. Interactive applications such as Telnet and remote X sessions are 



assigned as interactive traffic (category 6). Transfers that are not time-critical (such as 
Telnet sessions) but are still controlled by an interactive application such as FTP are 
assigned as category 4. E-mail is usually assigned as category 2, whereas low-priority 
material such as news is set to category 1. 

Flow Labels

As mentioned earlier, the Flow Label field new to the IPng header can be used to help 
identify the sender and destination of many IP datagrams. By employing caches to 
handle flows, the datagrams can be routed more efficiently. Not all applications can 
handle flow labels, in which case the field is set to a value of 0. 

A simple example might help show the usefulness of the flow label field. Suppose a PC 
running Windows 95 is connected to a UNIX server on another network and is sending a 
large number of datagrams. By setting a specific value of the flow label for all the 
datagrams in the transmission, the routers along the way to the server can assemble 
entries in their routing caches that indicate which way to route each datagram with 
the same flow label. When subsequent datagrams with the same flow label arrive, the 
router doesn't have to recalculate the route; it can simply check the cache and extract 
the saved information from that. This speeds up the passage of the datagrams through 
each router. 

To prevent caches from growing too large or holding stale information, IPng stipulates 
that the cache maintained in a routing device cannot be kept for more than six seconds. 
If a new datagram with the same flow label is not received within six seconds, the cache 
entry is removed. To prevent repeated values from the sending machine, the sender must 
wait six seconds before using the same flow label value for another destination. 

IPng allows flow labels to be used to reserve a route for time-critical applications. For 
example, a real-time application that has to send several datagrams along the same 
route and needs as rapid a transmission as possible (such as is needed for video or audio, 
for example) can establish the route by sending datagrams ahead of time, being careful 
not to exceed the six second time-out on the interim routers. 

128-Bit IP Addresses

Probably the most important aspect of IPng is its capability to provide for longer IP 
addresses. IPng increases the IP address from 32 bits to 128 bits. This enables an incredible 
number of addresses to be assembled, probably more than can ever be used. 



The new IP addresses support three kinds of addresses: unicast, multicast, and anycast. 

●     Unicast addresses are meant to identify a particular machine's interface. This lets 
a PC, for example, have several different protocols in use, each with its own 
address. Thus, you could send messages specifically to a machine's IP interface 
address and not the NetBEUI interface address. 

●     A multicast address identifies a group of interfaces, enabling all machines in a 
group to receive the same packet. This is much like broadcasts in IP version 4, 
although with more flexibility for defining groups. Your machine's interfaces 
could belong to several multicast groups. 

●     An anycast address identifies a group of interfaces on a single multicast address. 
In other words, more than one interface can receive the datagram on the same 
machine. 

The handling of fragmentation and reassembly is also changed with IPng to provide 
more capabilities for IP. Also proposed for IPng is an authentication scheme that can 
ensure that the data has not been corrupted between sender and receiver, as well as 
ensuring that the sending and receiving machines are who they claim they are. 

IP Extension Headers

IPng has the provision to enable additional headers to be tacked onto the IP header. 
This might be necessary when a simple routing to the destination is not possible, or when 
special services such as authentication are required for the datagram. The additional 
information required is packaged into an extension header and appended to the IP 
header. 

IPng defines several types of extension headers identified by a number placed in the Next 
Header field of the IP header. The currently accepted values and their meanings were 
shown in Table 3.3. Several extensions can be appended onto one IP header, with each 
extension's Next Header field indicating the next extension. Normally, the extension 
headers are appended in ascending numerical order. This makes it easier for routers to 
analyze the extensions, stopping the examination when it gets past router-specific 
extensions. 

Hop-by-Hop Headers



Extension type 0 is hop-by-hop, which is used to provide IP options to every machine the 
datagram passes through. The options included in the hop-by-hop extension have a 
standard format of a Type value, a Length, and a Value (except for the Pad1 option, 
which has a single value set to 0 and no length or value field). Both the Type and 
Length fields are a single byte in length, whereas the Value field's length is variable 
and indicated by the length byte. 

There are three types of hop-by-hop extensions defined so far, called Pad1, PadN, and 
Jumbo Payload. The Pad1 option is a single byte with a value of 0, no length, and no 
value. It is used to alter the order and position of other options in the header when 
necessary, dictated usually by an application. The PadN option is similar except it has N 
zeros placed in the Value field and a calculated value for the length. 

The Jumbo Payload extension option is used to handle datagram sizes in excess of 65,535 
bytes. The Length field in the IP header is limited to 16 bits, hence the limit of 65,535 for 
the datagram size. To handle larger datagram lengths, the IP header's Length field is 
set to 0, which redirects the routers to the extension to pick up a correct length value. 
The Length field can be defined in the extension header using 32 bits, which is in excess 
of 4 terabytes. 

Routing Headers

A routing extension can be tacked onto the IP header when the sending machine wants 
to control the routing of the datagram instead of leaving it to the routers along the 
path. The routing extension can be used to give routes to the destination. The routing 
extension includes fields for each IP address along the desired route. 

Fragment Headers

The fragment header can be appended to an IP datagram to enable a machine to 
fragment a large datagram into smaller parts. Part of the design of IPng was to prevent 
subsequent fragmentation, but in some cases fragmentation must be enabled in order to 
pass the datagram along the network. 

Authentication Headers



The authentication header is used to ensure that no alteration was made to the 
contents of the datagram and that the datagram originated at the machine shown in 
the IP header. By default, IPng uses an authentication scheme called Message Digest 5 
(MD5). Other authentication schemes can be used as long as both ends of the connection 
agree on the same scheme. 

The authentication header consists of a security parameters index (SPI) that, when 
combined with the destination IP address, defines the authentication scheme. The SPI is 
followed by authentication data, which with MD5 is 16 bytes long. MD5 starts with a 
key (padded to 128 bits if it is shorter), then appends the entire datagram. The key is then 
tagged at the end, and the MD5 algorithm is run on the whole. To prevent problems 
with hop counters and the authentication header itself altering the values, they are 
zeroed for the purposes of calculating the authentication value. The MD5 algorithm 
generates a 128-bit value that is placed in the authentication header. The steps are 
repeated in reverse at the receiving end. Both ends must have the same key value, of 
course, for the scheme to work. 

The datagram contents can be encrypted prior to generating authentication values 
using the default IPng encryption scheme, called Cipher Block Chaining (CBC), part of 
the Data Encryption Standard (DES). 

Internet Protocol Support in Different Environments

The University of California at Berkeley was given a grant in the early 1980s to modify 
their UNIX operating system to included support for IP. The BSD4.2 UNIX release 
already offered support for TCP and IP, as well as the Simple Mail Transfer Protocol 
(SMTP) and Address Resolution Protocol (ARP), but with DARPA's funds, BSD4.3 was 
developed to provide more complete support. 

The BSD4.2 support for IP was quite good prior to this grant, but it was limited to use in 
small local area networks only. To increase the capabilities of BSD UNIX's IP support, 
BSD added retransmission capabilities, Time to Live information, and redirection 
messages. Other features were added, too, enabling BSD4.3 to work with larger 
networks, internetworks (connections between different networks), and wide area 
networks connected by leased lines. This process brought the BSD UNIX system (and its 
licensees, such as Sun's SunOS) in line with the IP standards used on AT&T UNIX and 
other UNIX-based platforms. 

With the strong support for IP among the UNIX community, it was inevitable that 
manufacturers of other software operating systems would start to produce software 
that allowed their machines to interconnect to the UNIX IP system. Most of the drive 



to produce IP versions for non-UNIX operating systems was not because of the Internet 
(which hadn't started its phenomenal growth at the time) but the desire to integrate 
the other operating systems into local area networks that used UNIX servers. 

This section of today's material examines several hardware and software systems, 
focusing on the most widely used platforms, and shows the availability of IP (and entire 
TCP/IP suites) for those machines. Much of this is of interest only if you have the 
particular platform discussed (DEC VAX users tend not to care about interconnectivity 
to IBM SNA platforms, for example), so you can be selective about the sections you read. 
In some cases, I use one IP package from some of these platforms as an example and for 
screen captures later in this book. 

MS-DOS

PCs came onto the scene when TCP/IP was already in common use, so it was not surprising 
to find interconnection software rapidly introduced. In many ways, the PC was a perfect 
platform as a stand-alone machine with access through a communications package to 
other larger systems. The PC was perfect for a client/server environment. 

There are many PC-based versions of TCP/IP. The most widely used packages come from 
FTP Software, The Wollongong Group, and Beame and Whiteside Software Inc. All the 
packages feature interconnection capabilities to other machines using TCP/IP, and most 
add other useful features such as FTP and mail routing. 

FTP Software's PC/TCP is one of the most widely used. PC/TCP supports the major 
network interfaces: Packet Driver, IBM's Adapter Support Interface (ASI), Novell's Open 
Data Link Interface (ODI), and Microsoft/3Com's Network Driver Interface Specification 
(NDIS). All four LAN interfaces are discussed in more detail in the section titled "Local 
Area Networks" later today. 

The design of PC/TCP covers all seven layers of the OSI model, developed in such a 
manner that components can be configured as required to support different transport 
mechanisms and applications. Typically, the Packet Driver, ASI, ODI, or NDIS module has 
a generic PC/TCP kernel on top of it, with the PC/TCP application on top of that. 

PC/TCP enables the software to run both TCP/IP and another protocol, such as DECnet, 
Novell NetWare, or LAN Manager, simultaneously. This can be useful for enabling a PC 
to work within a small LAN workgroup, as well as within a larger network, without 
switching software. 

Microsoft Windows



There are several TCP/IP products appearing for Microsoft's Windows 3.x, Windows for 
Workgroups, and Windows 95. Most of the early packages for Windows 3.x were ports of 
DOS products. Although these tend to work well, a totally Windows-designed product 
tends to have a slight edge in terms of integration with the Windows environment. 
Windows for Workgroups 3.11 has no inherent TCP/IP drives, but several products are 
available to add TCP/IP suites for this GUI, as well as Windows 3.1 and Windows 3.11. 

One Windows 3.x-designed product is NetManage's Chameleon TCP/IP for Windows. 
Chameleon offers a complete port of TCP/IP and additional software utilities to enable 
a PC running Windows 3.x to integrate into a TCP/IP network. Chameleon offers 
terminal emulation, Telnet, FTP, electronic mail, DNS directory services, and NFS 
capabilities. There are several versions of Chameleon, depending on whether NFS is 
required. 

Windows 95 has TCP/IP drivers included with the distribution software, but they are not 
loaded by default (NetWare's IPX/SPX is the default protocol for Windows 95). You 
must install and configure the TCP/IP product as a separate step after installing 
Windows 95 if you want to use IP on your network. You can see how this is done on Day 
10, "Setting Up a Sample TCP/IP Network: DOS and Windows Clients." 

Windows NT

Windows NT is ideally suited for TCP/IP because it is designed to act as a server and 
gateway. Although Windows NT is not inherently multiuser, it does work well as a 
TCP/IP access device. Windows NT includes support for the TCP/IP protocols as a network 
transport, although the implementation does not include all the utilities usually 
associated with TCP/IP. TCP/IP can be chosen as the default protocol on a Windows NT 
machine when the operating system is installed. 

Among the add-on products available for Windows NT, NetManage's Chameleon32 is a 
popular package. Similar to the Microsoft Windows version, Chameleon32 offers versions 
for NFS. 

OS/2

IBM's OS/2 platform has a strong presence in corporations because of the IBM reputation 



and OS/2's solid performance. Not surprisingly, TCP/IP products are popular in these 
installations, as well. Although OS/2 differs from DOS in many ways, it is possible to 
run DOS-based ports of TCP/IP software under OS/2. A better solution is to run a native 
OS/2 application. Several TCP/IP OS/2-native implementations are available, including a 
TCP/IP product from IBM itself. 

Macintosh

Except for versions of UNIX that run on the Macintosh, the Macintosh and UNIX worlds 
have depended on several different versions of TCP/IP to keep them connected. With 
many corporations now wanting their investment in Macintosh computers to serve 
double duty as X terminals onto UNIX workstation, TCP/IP for the Mac has become even 
more important. 

Macintosh TCP products are available in several forms, usually as an add-on 
application or device driver for the Macintosh operating system. An alternative is 
Tenon Intersystems' MachTen product line, which enables a UNIX kernel and the 
Macintosh operating system to coexist on the same machine, providing compatibility 
between UNIX and the Macintosh file system and Apple events. TCP/IP is part of the 
MachTen product. 

The AppleTalk networking system enables Macs and UNIX machines to interconnect to a 
limited extent, although this requires installation of AppleTalk software on the UNIX 
host—something many system administrators are reluctant to do. Also, because 
AppleTalk is not as fast and versatile as Ethernet and other network transports, this 
solution is seldom favored. 

A better solution is simply to install TCP/IP on the Macintosh using one of several 
commercial packages available. Apple's own MacTCP software product can perform the 
basic services but must be coupled with software from other vendors for the higher 
layer applications. MacTCP also requires a Datagram Delivery Protocol to Internet 
Protocol (DDP-to-IP) router to handle the sending and receiving of DDP and IP 
datagrams. 

Apple's MacTCP functions by providing the physical through transport layers of the 
architecture. MacTCP allows for both LocalTalk and Ethernet hardware and supports 
both IP and TCP, as well as several other protocols. Running on top of MacTCP is the 
third-party application, which uses MacTCP's function calls to provide the final 
application for the user. Functions such as Telnet and FTP protocols are supported with 
add-on software, too. 



DEC

Digital Equipment Corporation's minicomputers were for many years a mainstay in 
scientific and educational research, so an obvious development for DEC and third-party 
software companies was to introduce IP software. Most DEC machines run either VMS or 
Ultrix (DEC's licensed version of UNIX). Providing IP capabilities to Ultrix was a matter 
of duplicating the code developed at Berkeley, but VMS was not designed for IP-type 
communications, relying instead on DEC's proprietary network software. 

DEC's networking software is the Digital Network Architecture (DECnet). The first 
widely used version was DECnet Phase IV (introduced in 1982), which used industry-
standard protocols for the lower layers but was proprietary in the upper layers. The 
1987 release of DECnet Phase V provided a combined DECnet IV and OSI system that 
allowed new OSI protocols to be used within the DECnet environment. 

DEC announced the ADVANTAGE-NETWORKS in 1991 as an enhancement of DECnet 
Phase V, adding support for the Internet Protocols. With the ADVANTAGE-NETWORKS, 
users could choose between the older, DEC-specific DECnet, OSI, or IP schemes. 
ADVANTAGE-NETWORKS is DEC's attempt to provide interoperability, providing the 
DEC-exclusive DECnet system for LAN use, and the TCP/IP and OSI systems for WANs and 
system interconnection between different hardware types. 

Users of VMS systems can connect to the UNIX environment in several ways. The easiest 
is to use a software gateway between the VMS machine and a UNIX machine. DEC's 
TCP/IP Services for VMS performs this function, as do several third-party software 
solutions, such as the Kermit protocol from Columbia University, Wollongong Group's 
WIN/TCP, and TGV's MultiNet. The advantage of the third-party communications 
protocol products such as Kermit is that they don't have to be connected to a UNIX 
machine, because any operating system that supports the communications protocol will 
work. 

ADVANTAGE-NETWORKS users have more options available, many from DEC. Because 
the protocol is already embedded in the network software, it makes the most sense 
simply to use it as it comes, if it fits into the existing system architecture. Because of 
internal conversion software, ADVANTAGE-NETWORKS can connect from a DECnet 
machine using either the DECnet or the OSI protocols. 

IBM's SNA

IBM's Systems Network Architecture (SNA) is in widespread use for both mainframes and 



minicomputers. Essentially all IBM equipment provides full support for IP and TCP, as 
well as many other popular protocols. Native IBM software is available for each 
machine, and several third-party products have appeared (usually at a lower cost than 
those offered by IBM). 

The IBM UNIX version, AIX (which few people know stands for Advanced Interactive 
Executive), has the TCP/IP software built in, enabling any machine that can run AIX 
(from workstations to large minicomputers) to interconnect through IP with no 
additional software. The different versions of AIX have slightly different support, so 
users should check before blindly trying to connect AIX machines. 

For large systems such as mainframes, IBM has the 3172 Interconnect Controller, which 
sits between the mainframe and a network. The 3172 is a hefty box that handles high-
speed traffic between a mainframe channel and the network, off-loading the processing 
for the communications aspect from the mainframe processor. It can connect to Ethernet 
or token ring networks and through additional software to DEC's DECnet. 

IBM mainframes running either MVS or VM can run software appropriately called 
TCP/IP for MVS and TCP/IP for VM. These products provide access from other machines 
running TCP/IP to access the mainframe operating system remotely, usually over a LAN. 
The software enables the calling machine (the client in a client/server scheme) to act 
as a 3270-series terminal to MVS or VM. FTP is provided for file transfers with 
automatic conversion from EBCDIC to ASCII. An interface to PROFS is available. Both 
TCP/IP software products support SMTP for electronic mail. 

Local Area Networks

LANs are an obvious target for TCP/IP, because TCP/IP helps solve many interconnection 
problems between different hardware and software platforms. To run TCP/IP over a 
network, the existing network and transport layer software must be replaced with 
TCP/IP, or the two must be merged together in some manner so that the LAN protocol 
can carry TCP/IP information within its existing protocol (encapsulation). 

Whichever solution is taken for the lower layer, a higher layer interface also must be 
developed, which resides in the equivalent of the data link layer, communicating 
between the higher layer applications and the hardware. This interface enables the 
higher layers to be independent of the hardware when using TCP/IP, which many popular 
LAN operating systems are not currently able to claim. 

Three interfaces (which have been mentioned earlier today) are currently in common 
use. The Packet Driver interface was the first interface developed to meet these needs. 
3Com Corporation and Microsoft developed the Network Driver Interface Specification 



(NDIS) for OS/2 and 3Com's networking software. NDIS provides a driver to communicate 
with the networking hardware and a protocol driver that acts as the interface to the 
higher layers. Novell's Open Data Link Interface (ODI) is similar to NDIS. 

For single-vendor, PC-based networks, several dedicated TCP/IP packages are available, 
such as Novell's LAN WorkPlace, designed to enable any NetWare system to connect to 
a LAN using an interface hardware card and a software driver. 

Summary

Today I started an in-depth look at the TCP/IP protocol family with the Internet 
Protocol. I covered what IP is and how it does its task of passing datagrams between 
machines. The construction of the IP datagram and the format of the IP header are 
shown in detail. The construction of the IP header is important to many TCP/IP family 
protocol members, so you can use this knowledge in later chapters. I also looked at the 
Internet Control Message Protocol (ICMP), an important aspect of the TCP/IP system. 

The next chapter moves to the next-higher layer in the TCP/IP layered architecture and 
looks at the Transmission Control Protocol (TCP). I also look at the related User 
Datagram Protocol (UDP). TCP and UDP form the basis for all TCP/IP protocols. 

Q&A

Why does the IP header have a Time to Live field? 

The easiest way to answer this is to consider what would happen without the field. A 
datagram with faulty information in the IP header could circulate around a network 
forever, forwarding from one gateway to another in search of a destination. With a 
Time to Live field, the number of bounces the datagram makes is limited. This has been 
proven to have an important effect on network traffic. 

Give a one-sentence description of ICMP. 

ICMP is an error-reporting system that communicates between different IP-based devices, 
providing information about status changes and failed devices. 

What is a neighbor in the IP sense? 



Neighbors are connected through a gateway. There is no physical restriction on the 
distance between neighbors. However, all neighbors share gateways. 

How is an ICMP message datagram constructed? 

The ICMP message, which can include part of the datagram that causes an ICMP message 
to be generated, has an ICMP header attached to the front of it. This is then passed to 
IP, which encapsulates it within an IP header. Finally, a network header is added when 
the datagram is sent over the network. 

Quiz

1.  Explain why IP is important to the proper transmission of data. 

2.  Show the construction of the IP header and the meaning of each element within 
the header structure. 

3.  ICMP headers are quite small. Show the structure of a typical message header and 
the meaning of the bits within it. 
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TCP and UDP

Yesterday's text examined the Internet Protocol (IP) in considerable detail. As you 
might remember, the Internet Protocol handles the lower-layer functionality. Today I 
look at the transport layer, where the Transmission Control Protocol (TCP) and User 
Datagram Protocol (UDP) come into play. 

TCP is one of the most widely used transport layer protocols, expanding from its 
original implementation on the ARPANET to connecting commercial sites all over the 



world. On Day 1, "Open Systems, Standards, and Protocols," you looked at the OSI seven-
layer model, which bears a striking resemblance to TCP/IP's layered model, so it is not 
surprising that many of the features of the OSI transport layer were based on TCP. 

In theory, a transport layer protocol could be a very simple software routine, but TCP 
cannot be called simple. Why use a transport layer that is as complex as TCP? The most 
important reason depends on IP's unreliability. As you saw yesterday, IP does not 
guarantee delivery of a datagram; it is a connectionless system with no reliability. IP 
simply handles the routing of datagrams, and if problems occur, IP discards the packet 
without a second thought (generating an ICMP error message back to the sender in the 
process). The task of ascertaining the status of the datagrams sent over a network and 
handling the resending of information if parts have been discarded falls to TCP, which 
can be thought of as riding shotgun over IP. 

Most users think of TCP and IP as a tightly knit pair, but TCP can be (and frequently is) 
used with other protocols without IP. For example, TCP or parts of it are used in the File 
Transfer Protocol (FTP) and the Simple Mail Transfer Protocol (SMTP), both of which 
do not use IP. 

What Is TCP?

The Transmission Control Protocol provides a considerable number of services to the IP 
layer and the upper layers. Most importantly, it provides a connection-oriented 
protocol to the upper layers that enable an application to be sure that a datagram sent 
out over the network was received in its entirety. In this role, TCP acts as a message-
validation protocol providing reliable communications. If a datagram is corrupted or 
lost, TCP usually handles the retransmission, rather than the applications in the 
higher layers. 

TCP is not a piece of software. It is a communications 
protocol. When you install a TCP stack on your machine, you 
are installing the TCP layer, and usually a lot more software 
to provide the rest of the TCP/IP services. TCP is used as a catch-
all phrase for TCP/IP in many cases. 

TCP manages the flow of datagrams from the higher layers to the IP layer, as well as 
incoming datagrams from the IP layer up to the higher level protocols. TCP has to 
ensure that priorities and security are properly respected. TCP must be capable of 



handling the termination of an application above it that was expecting incoming 
datagrams, as well as failures in the lower layers. TCP also must maintain a state table 
of all data streams in and out of the TCP layer. The isolation of all these services in a 
separate layer enables applications to be designed without regard to flow control or 
message reliability. Without the TCP layer, each application would have to implement 
the services themselves, which is a waste of resources. 

TCP resides in the transport layer, positioned above IP but below the upper layers and 
their applications, as shown in Figure 4.1. TCP resides only on devices that actually 
process datagrams, ensuring that the datagram has gone from the source to the target 
machine. It does not reside on a device that simply routes datagrams, so there is usually 
no TCP layer in a gateway. This makes sense, because on a gateway the datagram has no 
need to go higher in the layered model than the IP layer. 

Figure 4.1. TCP provides end-to-end communications. 

Because TCP is a connection-oriented protocol responsible for ensuring the transfer of 
a datagram from the source to destination machine (end-to-end communications), TCP 
must receive communications messages from the destination machine to acknowledge 
receipt of the datagram. The term virtual circuit is usually used to refer to the 
communications between the two end machines, most of which are simple 
acknowledgment messages (either confirmation of receipt or a failure code) and 
datagram sequence numbers. 

Following a Message

To illustrate the role of TCP, it is instructive to follow a sample message between two 
machines. The processes are simplified at this stage, to be expanded on later today. The 
message originates from an application in an upper layer and is passed to TCP from the 
next higher layer in the architecture through some protocol (often referred to as an 
upper-layer protocol, or ULP, to indicate that it resides above TCP). The message is 
passed as a stream—a sequence of individual characters sent asynchronously. This is in 
contrast to most protocols, which use fixed blocks of data. This can pose some conversion 
problems with applications that handle only formally constructed blocks of data or 
insist on fixed-size messages. 

TCP receives the stream of bytes and assembles them into TCP segments, or packets. In the 
process of assembling the segment, header information is attached at the front of the 
data. Each segment has a checksum calculated and embedded within the header, as well 
as a sequence number if there is more than one segment in the entire message. The length 
of the segment is usually determined by TCP or by a system value set by the system 
administrator. (The length of TCP segments has nothing to do with the IP datagram 
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length, although there is sometimes a relationship between the two.) 

If two-way communications are required (such as with Telnet or FTP), a connection 
(virtual circuit) between the sending and receiving machines is established prior to 
passing the segment to IP for routing. This process starts with the sending TCP software 
issuing a request for a TCP connection with the receiving machine. In the message is a 
unique number (called a socket number) that identifies the sending machine's 
connection. The receiving TCP software assigns its own unique socket number and sends 
it back to the original machine. The two unique numbers then define the connection 
between the two machines until the virtual circuit is terminated. (I look at sockets in a 
little more detail in a moment.) 

After the virtual circuit is established, TCP sends the segment to the IP software, which 
then issues the message over the network as a datagram. IP can perform any of the 
changes to the segment that you saw in yesterday's material, such as fragmenting it and 
reassembling it at the destination machine. These steps are completely transparent to 
the TCP layers, however. After winding its way over the network, the receiving 
machine's IP passes the received segment up to the recipient machine's TCP layer, where it 
is processed and passed up to the applications above it using an upper-layer protocol. 

If the message was more than one TCP segment long (not IP datagrams), the receiving 
TCP software reassembles the message using the sequence numbers contained in each 
segment's header. If a segment is missing or corrupt (which can be determined from the 
checksum), TCP returns a message with the faulty sequence number in the body. The 
originating TCP software can then resend the bad segment. 

If only one segment is used for the entire message, after comparing the segment's 
checksum with a newly calculated value, the receiving TCP software can generate 
either a positive acknowledgment (ACK) or a request to resend the segment and route 
the request back to the sending layer. 

The receiving machine's TCP implementation can perform a simple flow control to 
prevent buffer overload. It does this by sending a buffer size called a window value to 
the sending machine, following which the sender can send only enough bytes to fill the 
window. After that, the sender must wait for another window value to be received. This 
provides a handshaking protocol between the two machines, although it slows down the 
transmission time and slightly increases network traffic. 

The use of a sliding window is more efficient than a single 
block send and acknowledgment scheme because of delays 
waiting for the acknowledgment. By implementing a sliding 
window, several blocks can be sent at once. A properly 



configured sliding window protocol provides a much higher 
throughput. 

As with most connection-based protocols, timers are an important aspect of TCP. The use 
of a timer ensures that an undue wait is not involved while waiting for an ACK or an 
error message. If the timers expire, an incomplete transmission is assumed. Usually an 
expiring timer before the sending of an acknowledgment message causes a retransmission 
of the datagram from the originating machine. 

Timers can cause some problems with TCP. The specifications for TCP provide for the 
acknowledgment of only the highest datagram number that has been received without 
error, but this cannot properly handle fragmentary reception. If a message is composed 
of several datagrams that arrive out of order, the specification states that TCP cannot 
acknowledge the reception of the message until all the datagrams have been received. 
So even if all but one datagram in the middle of the sequence have been successfully 
received, a timer might expire and cause all the datagrams to be resent. With large 
messages, this can cause an increase in network traffic. 

If the receiving TCP software receives duplicate datagrams (as can occur with a 
retransmission after a timeout or due to a duplicate transmission from IP), the receiving 
version of TCP discards any duplicate datagrams, without bothering with an error 
message. After all, the sending system cares only that the message was received—not 
how many copies were received. 

TCP does not have a negative acknowledgment (NAK) function; it relies on a timer to 
indicate lack of acknowledgment. If the timer has expired after sending the datagram 
without receiving an acknowledgment of receipt, the datagram is assumed to have been 
lost and is retransmitted. The sending TCP software keeps copies of all unacknowledged 
datagrams in a buffer until they have been properly acknowledged. When this happens, 
the retransmission timer is stopped, and the datagram is removed from the buffer. 

TCP supports a push function from the upper-layer protocols. A push is used when an 
application wants to send data immediately and confirm that a message passed to TCP 
has been successfully transmitted. To do this, a push flag is set in the ULP connection, 
instructing TCP to forward any buffered information from the application to the 
destination as soon as possible (as opposed to holding it in the buffer until it is ready to 
transmit it). 

Ports and Sockets

All upper-layer applications that use TCP (or UDP) have a port number that identifies 



the application. In theory, port numbers can be assigned on individual machines, or 
however the administrator desires, but some conventions have been adopted to enable 
better communications between TCP implementations. This enables the port number to 
identify the type of service that one TCP system is requesting from another. Port 
numbers can be changed, although this can cause difficulties. Most systems maintain a 
file of port numbers and their corresponding service. 

Typically, port numbers above 255 are reserved for private use of the local machine, but 
numbers below 255 are used for frequently used processes. A list of frequently used port 
numbers is published by the Internet Assigned Numbers Authority and is available 
through an RFC or from many sites that offer Internet summary files for downloading. 
The commonly used port numbers on this list are shown in Table 4.1. The numbers 0 and 
255 are reserved. 

Table 4.1. Frequently used TCP port numbers.

Port Number Process Name Description 

1 TCPMUX TCP Port Service Multiplexer 

5 RJE Remote Job Entry 

7 ECHO Echo 

9 DISCARD Discard 

11 USERS Active Users 

13 DAYTIME Daytime 

17 Quote Quotation of the Day 

19 CHARGEN Character generator 

20 FTP-DATA File Transfer Protocol•Data 

21 FTP File Transfer Protocol•Control 

23 TELNET Telnet 

25 SMTP Simple Mail Transfer Protocol 

27 NSW-FE NSW User System Front End 

29 MSG-ICP MSG-ICP 

31 MSG-AUTH MSG Authentication 

33 DSP Display Support Protocol 

35 Private Print Servers 



37 TIME Time 

39 RLP Resource Location Protocol 

41 GRAPHICS Graphics 

42 NAMESERV Host Name Server 

43 NICNAME Who Is 

49 LOGIN Login Host Protocol 

53 DOMAIN Domain Name Server 

67 BOOTPS Bootstrap Protocol Server 

68 BOOTPC Bootstrap Protocol Client 

69 TFTP Trivial File Transfer Protocol 

79 FINGER Finger 

101 HOSTNAME NIC Host Name Server 

102 ISO-TSAP ISO TSAP 

103 X400 X.400 

104 X400SND X.400 SND 

105 CSNET-NS CSNET Mailbox Name Server 

109 POP2 Post Office Protocol v2 

110 POP3 Post Office Protocol v3 

111 RPC Sun RPC Portmap 

137 NETBIOS-NS NETBIOS Name Service 

138 NETBIOS-DG NETBIOS Datagram Service 

139 NETBIOS-SS NETBIOS Session Service 

146 ISO-TP0 ISO TP0 

147 ISO-IP ISO IP 

150 SQL-NET SQL NET 

153 SGMP SGMP 

156 SQLSRV SQL Service 

160 SGMP-TRAPS SGMP TRAPS 

161 SNMP SNMP 



162 SNMPTRAP SNMPTRAP 

163 CMIP-MANAGE CMIP/TCP Manager 

164 CMIP-AGENT CMIP/TCP Agent 

165 XNS-Courier Xerox 

179 BGP Border Gateway Protocol 

Each communication circuit into and out of the TCP layer is uniquely identified by a 
combination of two numbers, which together are called a socket. The socket is composed 
of the IP address of the machine and the port number used by the TCP software. Both 
the sending and receiving machines have sockets. Because the IP address is unique across 
the internetwork, and the port numbers are unique to the individual machine, the 
socket numbers are also unique across the entire internetwork. This enables a process to 
talk to another process across the network, based entirely on the socket number. 

TCP uses the connection (not the protocol port) as a 
fundamental element. A completed connection has two end 
points. This enables a protocol port to be used for several 
connections at the same time (multiplexing). 

The last section examined the process of establishing a message. During the process, the 
sending TCP requests a connection with the receiving TCP, using the unique socket 
numbers. This process is shown in Figure 4.2. If the sending TCP wants to establish a 
Telnet session from its port number 350, the socket number would be composed of the 
source machine's IP address and the port number (350), and the message would have a 
destination port number of 23 (Telnet's port number). The receiving TCP has a source 
port of 23 (Telnet) and a destination port of 350 (the sending machine's port). 

Figure 4.2. Setting up a virtual circuit with socket numbers. 

The sending and receiving machines maintain a port table, which lists all active port 
numbers. The two machines involved have reversed entries for each session between the 
two. This is called binding and is shown in Figure 4.3. The source and destination 
numbers are simply reversed for each connection in the port table. Of course, the IP 
addresses, and hence the socket numbers, are different. 

Figure 4.3. Binding entries in port tables. 
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If the sending machine is requesting more than one connection, the source port numbers 
are different, even though the destination port numbers might be the same. For example, 
if the sending machine were trying to establish three Telnet sessions simultaneously, 
the source machine port numbers might be 350, 351, and 352, and the destination port 
numbers would all be 23. 

It is possible for more than one machine to share the same destination socket—a process 
called multiplexing. In Figure 4.4, three machines are establishing Telnet sessions with a 
destination. They all use destination port 23, which is port multiplexing. Because the 
datagrams emerging from the port have the full socket information (with unique IP 
addresses), there is no confusion as to which machine a datagram is destined for. 

Figure 4.4. Multiplexing one destination port. 

When multiple sockets are established, it is conceivable that more than one machine 
might send a connection request with the same source and destination ports. However, 
the IP addresses for the two machines are different, so the sockets are still uniquely 
identified despite identical source and destination port numbers. 

TCP Communications with the Upper Layers

TCP must communicate with applications in the upper layer and a network system in the 
layer below. Several messages are defined for the upper-layer protocol to TCP 
communications, but there is no defined method for TCP to talk to lower layers 
(usually, but not necessarily, IP). TCP expects the layer beneath it to define the 
communication method. It is usually assumed that TCP and the transport layer 
communicate asynchronously. 

The TCP to upper-layer protocol (ULP) communication method is well-defined, consisting 
of a set of service request primitives. The primitives involved in ULP to TCP 
communications are shown in Table 4.2. 

Table 4.2. ULP-TCP service primitives.

Command Parameters Expected 

ULP to TCP Service Request Primitives

ABORT Local connection name 

ACTIVE-OPEN Local port, remote socket 
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Optional: ULP timeout, timeout action, precedence, 
security, options 

ACTIVE-OPEN-WITH-DATA 
Source port, destination socket, data, data length, 
push flag, urgent flag 

Optional: ULP timeout, timeout action, precedence, 
security 

ALLOCATE Local connection name, data length 

CLOSE Local connection name 

FULL-PASSIVE-OPEN Local port, destination socket 

Optional: ULP timeout, timeout action, precedence, 
security, options 

RECEIVE 
Local connection name, buffer address, byte count, 
push flag, urgent flag 

SEND 
Local connection name, buffer address, data length, 
push flag, urgent flag 

Optional: ULP timeout, timeout action 

STATUS Local connection name 

UNSPECIFIED-PASSIVE-OPEN Local port 

Optional: ULP timeout, timeout action, precedence, 
security, options 

TCP to ULP Service Request Primitives

CLOSING Local connection name 

DELIVER 
Local connection name, buffer address, data length, 
urgent flag 

ERROR Local connection name, error description 

OPEN-FAILURE Local connection name 

OPEN-ID 
Local connection name, remote socket, destination 
address 

OPEN-SUCCESS Local connection name 



STATUS RESPONSE 

Local connection name, source port, source address, 
remote socket, connection state, receive window, send 
window, amount waiting ACK, amount waiting receipt, 
urgent mode, precedence, security, timeout, timeout 
action 

TERMINATE Local connection name, description 

Passive and Active Ports

TCP enables two methods to establish a connection: active and passive. An active 
connection establishment happens when TCP issues a request for the connection, based 
on an instruction from an upper-level protocol that provides the socket number. A 
passive approach takes place when the upper-level protocol instructs TCP to wait for 
the arrival of connection requests from a remote system (usually from an active open 
instruction). When TCP receives the request, it assigns a port number. This enables a 
connection to proceed rapidly, without waiting for the active process. 

There are two passive open primitives. A specified passive open creates a connection when 
the precedence level and security level are acceptable. An unspecified passive open 
opens the port to any request. The latter is used by servers that are waiting for clients 
of an unknown type to connect to them. 

TCP has strict rules about the use of passive and active connection processes. Usually a 
passive open is performed on one machine, while an active open is performed on the other, 
with specific information about the socket number, precedence (priority), and security 
levels. 

Although most TCP connections are established by an active request to a passive port, it 
is possible to open a connection without a passive port waiting. In this case, the TCP that 
sends a request for a connection includes both the local socket number and the remote 
socket number. If the receiving TCP is configured to enable the request (based on the 
precedence and security settings, as well as application-based criteria), the connection 
can be opened. This process is looked at again in the section titled "TCP and 
Connections." 

TCP Timers



TCP uses several timers to ensure that excessive delays are not encountered during 
communications. Several of these timers are elegant, handling problems that are not 
immediately obvious at first analysis. The timers used by TCP are examined in the 
following sections, which reveal their roles in ensuring that data is properly sent from 
one connection to another. 

The Retransmission Timer

The retransmission timer manages retransmission timeouts (RTOs), which occur when a 
preset interval between the sending of a datagram and the returning acknowledgment 
is exceeded. The value of the timeout tends to vary, depending on the network type, to 
compensate for speed differences. If the timer expires, the datagram is retransmitted 
with an adjusted RTO, which is usually increased exponentially to a maximum preset 
limit. If the maximum limit is exceeded, connection failure is assumed, and error messages 
are passed back to the upper-layer application. 

Values for the timeout are determined by measuring the average time that data takes to 
be transmitted to another machine and the acknowledgment received back, which is 
called the round-trip time, or RTT. From experiments, these RTTs are averaged by a 
formula that develops an expected value, called the smoothed round-trip time, or SRTT. 
This value is then increased to account for unforeseen delays. 

The Quiet Timer

After a TCP connection is closed, it is possible for datagrams that are still making their 
way through the network to attempt to access the closed port. The quiet timer is 
intended to prevent the just-closed port from reopening again quickly and receiving 
these last datagrams. 

The quiet timer is usually set to twice the maximum segment lifetime (the same value as 
the Time to Live field in an IP header), ensuring that all segments still heading for the 
port have been discarded. Typically, this can result in a port being unavailable for up to 
30 seconds, prompting error messages when other applications attempt to access the port 
during this interval. 

The Persistence Timer



The persistence timer handles a fairly rare occurrence. It is conceivable that a receive 
window might have a value of 0, causing the sending machine to pause transmission. The 
message to restart sending might be lost, causing an infinite delay. The persistence timer 
waits a preset time and then sends a one-byte segment at predetermined intervals to 
ensure that the receiving machine is still clogged. 

The receiving machine resends the zero window-size message after receiving one of these 
status segments, if it is still backlogged. If the window is open, a message giving the new 
value is returned, and communications are resumed. 

The Keep-Alive Timer and the Idle Timer

Both the keep-alive timer and the idle timer were added to the TCP specifications after 
their original definition. The keep-alive timer sends an empty packet at regular 
intervals to ensure that the connection to the other machine is still active. If no 
response has been received after sending the message by the time the idle timer has 
expired, the connection is assumed to be broken. 

The keep-alive timer value is usually set by an application, with values ranging from 5 
to 45 seconds. The idle timer is usually set to 360 seconds. 

TCP uses adaptive timer algorithms to accommodate 
delays. The timers adjust themselves to the delays experienced 
over a connection, altering the timer values to reflect 
inherent problems. 

Transmission Control Blocks and Flow Control

TCP has to keep track of a lot of information about each connection. It does this 
through a Transmission Control Block (TCB), which contains information about the 
local and remote socket numbers, the send and receive buffers, security and priority 



values, and the current segment in the queue. The TCB also manages send and receive 
sequence numbers. 

The TCB uses several variables to keep track of the send and receive status and to 
control the flow of information. These variables are shown in Table 4.3. 

Table 4.3. TCP send and receive variables.

Variable Name Description 

Send Variables

SND.UNA Send Unacknowledged 

SND.NXT Send Next 

SND.WND Send Window 

SND.UP Sequence number of last urgent set 

SND.WL1 Sequence number for last window update 

SND.WL2 Acknowledgment number for last window update 

SND.PUSH Sequence number of last pushed set 

ISS Initial send sequence number 

Receive Variables

RCV.NXT Sequence number of next received set 

RCV.WND Number of sets that can be received 

RCV.UP Sequence number of last urgent data 

RCV.IRS Initial receive sequence number 

Using these variables, TCP controls the flow of information between two sockets. A 
sample connection session helps illustrate the use of the variables. It begins with 
Machine A wanting to send five blocks of data to Machine B. If the window limit is seven 
blocks, a maximum of seven blocks can be sent without acknowledgment. The SND.UNA 
variable on Machine A indicates how many blocks have been sent but are 
unacknowledged (5), and the SND.NXT variable has the value of the next block in the 
sequence (6). The value of the SND.WND variable is 2 (seven blocks possible, minus five 
sent), so only two more blocks could be sent without overloading the window. Machine 
B returns a message with the number of blocks received, and the window limit is 
adjusted accordingly. 



The passage of messages back and forth can become quite complex as the sending machine 
forwards blocks unacknowledged up to the window limit, waiting for acknowledgment 
of earlier blocks that have been removed from the incoming cue, and then sending more 
blocks to fill the window again. The tracking of the blocks becomes a matter of 
bookkeeping, but with large window limits and traffic across internetworks that 
sometimes cause blocks to go astray, the process is, in many ways, remarkable. 

TCP Protocol Data Units

As mentioned earlier, TCP must communicate with IP in the layer below (using an IP-
defined method) and applications in the upper layer (using the TCP-ULP primitives). TCP 
also must communicate with other TCP implementations across networks. To do this, it 
uses Protocol Data Units (PDUs), which are called segments in TCP parlance. 

The layout of the TCP PDU (commonly called the header) is shown in Figure 4.5. 

Figure 4.5. The TCP Protocol Data Unit. 

The different fields are as follows: 

●     Source port: A 16-bit field that identifies the local TCP user (usually an upper-
layer application program). 

●     Destination port: A 16-bit field that identifies the remote machine's TCP user. 

●     Sequence number: A number indicating the current block's position in the 
overall message. This number is also used between two TCP implementations to 
provide the initial send sequence (ISS) number. 

●     Acknowledgment number: A number that indicates the next sequence number 
expected. In a backhanded manner, this also shows the sequence number of the 
last data received; it shows the last sequence number received plus 1. 

●     Data offset: The number of 32-bit words that are in the TCP header. This field is 
used to identify the start of the data field. 

●     Reserved: A 6-bit field reserved for future use. The six bits must be set to 0. 

●     Urg flag: If on (a value of 1), indicates that the urgent pointer field is 
significant. 

●     Ack flag: If on, indicates that the Acknowledgment field is significant. 
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●     Psh flag: If on, indicates that the push function is to be performed. 

●     Rst flag: If on, indicates that the connection is to be reset. 

●     Syn flag: If on, indicates that the sequence numbers are to be synchronized. This 
flag is used when a connection is being established. 

●     Fin flag: If on, indicates that the sender has no more data to send. This is the 
equivalent of an end-of-transmission marker. 

●     Window: A number indicating how many blocks of data the receiving machine can 
accept. 

●     Checksum: Calculated by taking the 16-bit one's complement of the one's 
complement sum of the 16-bit words in the header (including pseudo-header) and 
text together. (A rather lengthy process required to fit the checksum properly 
into the header.) 

●     Urgent pointer: Used if the urg flag was set; it indicates the portion of the data 
message that is urgent by specifying the offset from the sequence number in the 
header. No specific action is taken by TCP with respect to urgent data; the action 
is determined by the application. 

●     Options: Similar to the IP header option field, this is used for specifying TCP 
options. Each option consists of an option number (one byte), the number of bytes 
in the option, and the option values. Only three options are currently defined for 
TCP: 

0 End of option list 

1 No operation 

2 Maximum segment size 

●     Padding: Filled to ensure that the header is a 32-bit multiple. 

Following the PDU or header is the data. The Options field has one useful function: to 
specify the maximum buffer size a receiving TCP implementation can accommodate. 
Because TCP uses variable-length data areas, it is possible for a sending machine to 
create a segment that is longer than the receiving software can handle. 

The Checksum field calculates the checksum based on the entire segment size, including 
a 96-bit pseudoheader that is prefixed to the TCP header during the calculation. The 
pseudoheader contains the source address, destination address, protocol identifier, and 
segment length. These are the parameters that are passed to IP when a send instruction 
is passed, and also the ones read by IP when delivery is attempted. 



TCP and Connections

TCP has many rules imposed on how it communicates. These rules and the processes that 
TCP follows to establish a connection, transfer data, and terminate a connection are 
usually presented in state diagrams. (Because TCP is a state-driven protocol, its actions 
depend on the state of a flag or similar construct.) Avoiding overly complex state 
diagrams is difficult, so flow diagrams can be used as a useful method for understanding 
TCP. 

Establishing a Connection

A connection can be established between two machines only if a connection between the 
two sockets does not exist, both machines agree to the connection, and both machines 
have adequate TCP resources to service the connection. If any of these conditions are 
not met, the connection cannot be made. The acceptance of connections can be triggered 
by an application or a system administration routine. 

When a connection is established, it is given certain properties that are valid until the 
connection is closed. Typically, these are a precedence value and a security value. 
These settings are agreed upon by the two applications when the connection is in the 
process of being established. 

In most cases, a connection is expected by two applications, so they issue either active or 
passive open requests. Figure 4.6 shows a flow diagram for a TCP open. The process begins 
with Machine A's TCP receiving a request for a connection from its ULP, to which it 
sends an active open primitive to Machine B. (Refer back to Table 4.2 for the TCP 
primitives.) The segment that is constructed has the SYN flag set on (set to 1) and has a 
sequence number assigned. The diagram shows this with the notation "SYN SEQ 50," 
indicating that the SYN flag is on and the sequence number (Initial Send Sequence 
number or ISS) is 50. (Any number could have been chosen.) 

Figure 4.6. Establishing a connection. 

The application on Machine B has issued a passive open instruction to its TCP. When the 
SYN SEQ 50 segment is received, Machine B's TCP sends an acknowledgment back to 
Machine A with the sequence number of 51. Machine B also sets an ISS number of its 
own. The diagram shows this message as "ACK 51; SYN 200," indicating that the message is 
an acknowledgment with sequence number 51, it has the SYN flag set, and it has an ISS 
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of 200. 

Upon receipt, Machine A sends back its own acknowledgment message with the sequence 
number set to 201. This is "ACK 201" in the diagram. Then, having opened and 
acknowledged the connection, Machine A and Machine B both send connection open 
messages through the ULP to the requesting applications. 

It is not necessary for the remote machine to have a passive open instruction, as 
mentioned earlier. In this case, the sending machine provides both the sending and 
receiving socket numbers, as well as precedence, security, and timeout values. It is 
common for two applications to request an active open at the same time. This is resolved 
quite easily, although it does involve a little more network traffic. 

Data Transfer

Transferring information is straightforward, as shown in Figure 4.7. For each block of 
data received by Machine A's TCP from the ULP, TCP encapsulates it and sends it to 
Machine B with an increasing sequence number. After Machine B receives the message, it 
acknowledges it with a segment acknowledgment that increments the next sequence 
number (and hence indicates that it has received everything up to that sequence 
number). Figure 4.7 shows the transfer of two segments of information—one each way. 

Figure 4.7. Data transfers. 

The TCP data transport service actually embodies six subservices: 

●     Full duplex: Enables both ends of a connection to transmit at any time, even 
simultaneously. 

●     Timeliness: The use of timers ensures that data is transmitted within a 
reasonable amount of time. 

●     Ordered: Data sent from one application is received in the same order at the 
other end. This occurs despite the fact that the datagrams might be received out 
of order through IP, because TCP reassembles the message in the correct order 
before passing it up to the higher layers. 

●     Labeled: All connections have an agreed-upon precedence and security value. 

●     Controlled flow: TCP can regulate the flow of information through the use of 
buffers and window limits. 

●     Error correction: Checksums ensure that data is free of errors (within the 
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checksum algorithm's limits). 

Closing Connections

To close a connection, one of the TCPs receives a close primitive from the ULP and issues 
a message with the FIN flag set on. This is shown in Figure 4.8. In the figure, Machine A's 
TCP sends the request to close the connection to Machine B with the next sequence 
number. Machine B then sends back an acknowledgment of the request and its next 
sequence number. Following this, Machine B sends the close message through its ULP to 
the application and waits for the application to acknowledge the closure. This step is 
not strictly necessary; TCP can close the connection without the application's 
approval, but a well-behaved system would inform the application of the change in 
state. 

Figure 4.8. Closing a connection. 

After receiving approval to close the connection from the application (or after the 
request has timed out), Machine B's TCP sends a segment back to Machine A with the FIN 
flag set. Finally, Machine A acknowledges the closure, and the connection is 
terminated. 

An abrupt termination of a connection can occur when one side shuts down the socket. 
This can be done without any notice to the other machine and without regard to any 
information in transit between the two. Aside from sudden shutdowns caused by 
malfunctions or power outages, abrupt termination can be initiated by a user, an 
application, or a system monitoring routine that judges the connection worthy of 
termination. The other end of the connection might not realize that an abrupt 
termination has occurred until it attempts to send a message and the timer expires. 

To keep track of all the connections, TCP uses a connection table. Each existing 
connection has an entry in the table that shows information about the end-to-end 
connection. The layout of the TCP connection table is shown in Figure 4.9. 

Figure 4.9. The TCP connection table. 

The meaning of each column is as follows: 

●     State: The state of the connection (closed, closing, listening, waiting, and so on). 

●     Local address: The IP address for the connection. When in a listening state, this 
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is set to 0.0.0.0. 

●     Local port: The local port number. 

●     Remote address: The remote machine's IP address. 

●     Remote port: The port number of the remote connection. 

User Datagram Protocol (UDP)

TCP is a connection-based protocol. There are times when a connectionless protocol is 
required, so UDP is used. UDP is used with both the Trivial File Transfer Protocol (TFTP) 
and the Remote Call Procedure (RCP). Connectionless communications don't provide 
reliability, meaning there is no indication to the sending device that a message has been 
received correctly. Connectionless protocols also do not offer error-recovery 
capabilities—which must be either ignored or provided in the higher or lower layers. 
UDP is much simpler than TCP. It interfaces with IP (or other protocols) without the 
bother of flow control or error-recovery mechanisms, acting simply as a sender and 
receiver of datagrams. 

UDP is connectionless; TCP is based on connections. 

The UDP message header is much simpler than TCP's. It is shown in Figure 4.10. Padding 
can be added to the datagram to ensure that the message is a multiple of 16 bits. 

Figure 4.10. The UDP header. 

The fields are as follows: 

●     Source port: An optional field with the port number. If a port number is not 
specified, the field is set to 0. 

●     Destination port: The port on the destination machine. 

●     Length: The length of the datagram, including header and data. 
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●     Checksum: A 16-bit one's complement of the one's complement sum of the 
datagram, including a pseudoheader similar to that of TCP. 

The UDP checksum field is optional, but if it isn't used, no checksum is applied to the data 
segment because IP's checksum applies only to the IP header. If the checksum is not used, 
the field should be set to 0. 

Summary

Today, I looked at TCP in reasonable detail. Combined with the information in the last 
three days, you now have the theory and background necessary to better understand 
TCP/IP utilities, such as Telnet and FTP, as well as other protocols that use or closely 
resemble TCP/IP, such as SMTP and TFTP. 

The details of TCP/IP are revisited later in this book, but you can now proceed to 
actually using TCP/IP and its toolset. 

Q&A

Define multiplexing and how it would be used to combine three source machines to 
one destination machine. Relate to port numbers. 

Multiplexing was explained in some detail on Day 1. It refers to combining several 
connections into one. Three machines could each establish source ports to one machine 
using only one receiving port. The port numbers for the sending machines would all be 
different, but all three would use the same destination port number. This was shown in 
Figure 4.4. 

What one word best describes the difference between TCP and UDP? 

Connections. TCP is connection-based, whereas UDP is connectionless. 

What are port numbers and sockets? 

A port number is used to identify the type of service provided. A socket is the address of 
the port on which a connection is established. There is no inherent physical relationship 
between the two, although many machines assign certain sockets for particular services 



(port numbers). 

Describe the timers used with TCP. 

The retransmission timer is used to control the resending of a datagram. The quiet timer 
is used to delay the reassignment of a port. The persistence timer is used to test a receive 
window. Keep-alive timers send empty data to keep a connection alive. The idle timer is 
the amount of time to wait for a disconnection to be terminated after no datagrams are 
received. 

What are the six data transport subservices offered by TCP? 

The subservices are full duplex, timeliness, ordered, labeled, controlled flow, and 
error correction. 

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the 
material covered. Some Workshop sections of this book also contain exercises to provide 
you with experience in using what you have learned. Try to understand the quiz and 
exercise answers before continuing on to the next chapter. Answers are provided in 
Appendix F, "Answers to Quizzes." 

Quiz

1.  Draw a diagram showing the binding of port tables when three machines are 
sending information to each other. 

2.  Draw the TCP protocol data unit (PDU) and explain the meaning of each field. 

3.  Use a diagram to show the signals involved with two machines establishing a TCP 
connection. Then, show how data is transferred. Finally, show the termination 
process. 

4.  What is a TCP connection table? How is it used? 

5.  Draw the UDP header and explain the fields it contains. 

6.  What are the advantages of using UDP over TCP? When would you not want to 



use UDP? 
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TCP/IP functions perfectly well on a local area network, but its development was 
spurred by internetworks (more specifically by the Internet itself), so it seems logical 
that TCP/IP has an architecture that works well with internetwork operations. Today I 
examine these internetwork specifics in more detail by looking at the manner in which 
gateways transfer routing information between themselves. 

The routing method used to send a message from its origin to destination is important, 
but the method by which the routing information is transferred depends on the role of 
the network gateways. There are special protocols developed specifically for different 
kinds of gateways, all of which function with TCP. 

Gateways, Bridges, and Routers

To forward messages through networks, a machine's IP layer software compares the 
destination address of the message (contained in the Protocol Data Unit, or PDU) to the 
local machine's address. If the message is not for the local machine, the message is passed 
on to the next machine. Moving messages around small network is quite easy, but large 
networks and internetworks add to the complexity, requiring gateways, bridges, and 
routers, which try to establish the best method of moving the message to its destination. 

Defining the meaning of these terms is relatively easy: 

●     A gateway is a device that performs routing functions, usually as a stand-alone 
device, that also can perform protocol translation from one network to another. 

●     A bridge is a network device that connects two or more networks that use the 
same protocol. 

●     A router is a network node that forwards datagrams around the network. 

The gateway's protocol conversion capability is important (otherwise, the machine is no 
different from a bridge). Protocol conversion usually takes place in the lower layers, 
sometimes including the transport layer. Conversion can occur in several forms, such as 
when moving from a local area network format to Ethernet (in which case the format 
of the packet is changed) or from one proprietary file convention to another (in which 
case the file specifications are converted). 

Bridges act as links between networks, which often have a bridge at either end of a 
dedicated communications line (such as a leased line) or through a packet system such as 



the Internet. There might be a conversion applied between bridges to increase the 
transmission speed. This requires both ends of the connection to understand a common 
protocol. 

Routers operate at the network level, forwarding packets to their destination. 
Sometimes a protocol change can be performed by a router that has several delivery 
options available, such as Ethernet or serial lines. 

A term you might occasionally see is brouter, a contraction of both bridge and router. As 
you might expect, brouters perform the functions of both a bridge and a router, 
although sometimes not all functions are provided. The term brouter is often applied 
for any device that performs some or all of the functions of both a bridge and a router. 

A term in common use when dealing with routes is packet-switching. A packet-switched 
network is one in which all transfers are based on a self-contained packet of data (like 
that of TCP/IP's datagrams). There are also message-switched (self-contained complete 
messages, as with UNIX's UUCP system) and line-switched (fixed or dedicated 
connections) networks, but these are rarely used with TCP/IP. Packet-switched 
networks tend to be faster overall than message-switched networks, but they are also 
considerably more complex. 

Gateway Protocols

Gateway protocols are used to exchange information with other gateways in a fast, 
reliable manner. Using gateway protocols, transmission time over large internetworks 
has been shown to increase, although there is considerable support for the idea of 
having only one protocol across the entire Internet (which would eliminate gateway 
protocols in favor of TCP/IP throughout). 

The Internet provides for two types of gateways: core and non-core. All core gateways 
are administered by the Internet Network Operations Center (INOC). Non-core gateways 
are not administered by this central authority but by groups outside the Internet 
hierarchy (who might still be connected to the Internet but administer their own 
machines). Typically, corporations and educational institutions use non-core gateways. 

The origin of core gateways arose from the ARPANET, where each node was under the 
control of the governing agency. ARPANET called them stub gateways, whereas any 
gateway not under direct control (non-core in Internet terms) was called a nonrouting 
gateway. The move to the Internet and its proliferation of gateways required the 
implementation of the Gateway-to-Gateway Protocol (GGP), which was used between 
core gateways. The GGP was usually used to spread information about the non-core 
gateways attached to each core gateway, enabling routing tables to be built. 



As the Internet grew, it became impossible for any one gateway to hold a complete map 
of the entire internetwork. This was solved by having each gateway handle only a 
specific section of the internetwork, relying on neighboring gateways to know more 
about their own attached networks when a message was passed. One problem that 
frequently occurred was a lack of information for complete routing decisions, so 
default routes were used. 

Earlier in this book, the term autonomous system was introduced. An autonomous system is 
one in which the structure of the network it is attached to is not visible to the rest of 
the internetwork. Usually, a gateway leads into the network, so all traffic for that 
network must go through the gateway, which hides the internal structure of the local 
network from the rest of the internetwork. 

If the local network has more than one gateway and they can talk to each other, they 
are considered interior neighbors. (The term interior neighbor is sometimes applied to the 
machines within the network, too, not just the gateways.) If the gateways belong to 
different autonomous systems, they are exterior gateways. Thus, when default routes 
are required, it is up to the exterior gateways to route messages between autonomous 
systems. Interior gateways are used to transfer messages into an autonomous system. 

Within a network, the method of transferring routing information between interior 
gateways is usually the Routing Information Protocol (RIP) or the less common HELLO 
protocol, both of which are Interior Gateway Protocols (IGPs). These protocols are 
designed specifically for interior neighbors. On the Internet, messages between two 
exterior gateways are through the Exterior Gateway Protocol (EGP). RIP, HELLO, and 
EGP all rely on a frequent (every thirty seconds) transfer of information between 
gateways to update routing tables. 

The three gateway protocols are intertwined: EGP is used 
between gateways of autonomous systems, whereas the IGPs RIP 
and HELLO are used within the network itself. GGP is used 
between core gateways. 

Why not use GGP for all internetwork communications, dropping the need for EGPs? The 
answer lies in the fact that core gateways that use GGP know about all the other core 
gateways on the internetwork. This simplifies their messaging and provides complete 
routing tables. However, core gateways usually lead into many complex networks of 
more autonomous networks, most of which the core gateways don't know about. 
However, the exterior gateways must know about all the networks directly connected 
to it, but not all the networks on the entire internetwork, so the routing tables and 



routing algorithms for a core and non-core gateway are different. This also means that 
messages can have different formats, because routing information for a non-core 
gateway has some connections that are hidden from other gateways. 

It is possible for a large autonomous system to be composed of several subnetworks or 
areas, each of which communicates with the other areas through an IGP. Each 
subnetwork or area has a designated gateway, called a border gateway, or border router, to 
indicate that it is within an area. BORDER routers communicate with each other using 
IGP. A commonly encountered term is boundary gateway, which is the same as an exterior 
gateway or a path to another autonomous network. This is illustrated in Figure 5.1, 
which shows three subnetworks or areas that communicate with each other through 
boundary gateways or routers using IGP, and two exterior gateways (also called 
boundary gateways) that communicate with the rest of the internetwork using EGP. 

Figure 5.1. Interior and exterior gateways. 

Routing Daemons

To handle the routing tables, most UNIX systems use a daemon called routed. A few 
systems run a daemon called gated. Both routed and gated can exchange RIP messages 
with other machines, updating their route tables as necessary. The gated program can 
also handle EGP and HELLO messages, updating tables for the internetwork. Both 
routed and gated can be managed by the system administrator to select favorable 
routes, or to tag a route as not reliable. 

The configuration information for gated and routed is usually stored as files named 
gated.cfg, gated.conf, or gated.cf. Some systems specify gated information files for each 
protocol, resulting in the files gated.egp, gated.hello, and gated.rip. A sample 
configuration file for EGP used by the gated process is shown here: 

#     @(#)gated.egp 4.1 Lachman System V STREAMS TCP  source

#   sample EGP config file

traceoptions general kernel icmp egp protocol ;

autonomoussystem 519 ;

rip no;

egp yes {
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     group ASin 519 {

          neighbor  128.212.64.1 ;

     } ;

} ;

static {

     default gateway 128.212.64.1 pref 100 ;

} ;

propagate proto egp as 519 {

     proto rip gateway 128.212.64.1 {

          announce 128.212 metric 2 ;

     } ;

     proto direct {

          announce 128.212 metric 2 ;

     } ;

} ;

propagate proto rip {

     proto default {

          announce 0.0.0.0 metric 1 ;

     } ;

     proto rip {

          noannounce all ;

     } ;

} ;

The code above shows a number of configuration details. It starts with a number of 
options and the switch that turns EGP on and sets the neighbor IP address. This is 
followed by code that defines the way EGP behaves. Most of the details are of little 
interest and are seldom (if ever) modified by a user. Instead, configuration routines tend 



to manage this file’s contents. 

The UNIX system administrator also has a program called route that enables direct 
entry of routing table information. The information on a UNIX system regarding 
routing is usually stored in the file /etc/gateways. 

It has become common practice to allow a default network Internet address of 0.0.0.0, 
which refers to a gateway on the network that should be capable of resolving an 
unknown address. (This is included in the previous sample configuration file as proto 
default.) The default route is used when the local machine cannot resolve the address 
properly. Because the routing tables on a gateway are usually more complete than 
those on a local machine, this helps send packets to their intended destination. If the 
default address gateway cannot resolve the address, an Internet Control Message 
Protocol (ICMP) error message is returned to the sender. 

Routing

Routing refers to the transmission of a packet of information from one machine through 
another. Each machine that the packet enters analyzes the contents of the packet 
header and decides its action based on the information within the header. If the 
destination address of the packet matches the machine's address, the packet should be 
retained and processed by higher-level protocols. If the destination address doesn't 
match the machine's, the packet is forwarded further around the network. Forwarding 
can be to the destination machine itself, or to a gateway or bridge if the packet is to 
leave the local network. 

Routing is a primary contributor to the complexity of packet-switched networks. It is 
necessary to account for an optimal path from source to destination machines, as well 
as to handle problems such as a heavy load on an intervening machine or the loss of a 
connection. The route details are contained in a routing table, and several 
sophisticated algorithms work with the routing table to develop an optimal route for a 
packet. 

Creating a routing table and maintaining it with valid entries are important aspects of 
a protocol. Here are a few common methods of building a routing table: 

●     A fixed table is created with a map of the network, which must be modified and 
reread every time there is a physical change anywhere on the network. 

●     A dynamic table is used that evaluates traffic load and messages from other nodes 
to refine an internal table. 



●     A fixed central routing table is used that is loaded from the central repository 
by the network nodes at regular intervals or when needed. 

Each method has advantages and disadvantages. The fixed table approach, whether 
located on each network node or downloaded at regular intervals from a centrally 
maintained fixed table, is inflexible and can't react to changes in the network topology 
quickly. The central table is better than the first option, simply because it is possible 
for an administrator to maintain the single table much more easily than a table on each 
node. 

The dynamic table is the best for reacting to changes, although it does require better 
control, more complex software, and more network traffic. However, the advantages 
usually outweigh the disadvantages, and a dynamic table is the method most frequently 
used on the Internet. 

Fewest-Hops Routing

Most networks and gateways to internetworks work on the assumption that the 
shortest route (in terms of machines traveled through) is the best way to route 
messages. Each machine that a message passes through is called a hop, so this routing 
method is known as fewest hops. Although experimentation has shown that the fewest-
hops method is not necessarily the fastest method (because it doesn't take into account 
transmission speed between machines), it is one of the easiest routing methods to 
implement. 

To provide fewest-hops routing, a table of the distance between any two machines is 
developed, or an algorithm is available to help calculate the number of hops required 
to reach a target machine. This is shown using the sample internetwork of gateways in 
Figure 5.2 and its corresponding table of distances between the gateways in the figure, 
which is shown in Table 5.1. 

Figure 5.2. An internetwork of gateways. 

Table 5.1. Table of fewest hops from Figure 5.2.

A B C D E F G H I 

A 1 2 1 2 3 4 3 4 

B 1 1 2 3 4 5 4 5 
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C 2 1 1 2 3 4 3 4 

D 1 2 1 1 2 3 2 3 

E 2 3 2 1 1 2 1 2 

F 3 4 3 2 1 1 2 1 

G 4 5 4 3 2 1 2 1 

H 3 4 3 2 1 2 2 1 

I 4 5 4 3 2 1 1 1 

When a message is to be routed using the fewest-hops approach, the table of distances is 
consulted, and the route with the fewest number of hops is selected. The message is then 
routed to the gateway that is closest to the destination network. When intermediate 
gateways receive the message, they perform the same type of table lookup and forward 
to the next gateway on the route. 

There are several problems with the fewest-hops approach. If the tables of the gateways 
through which a message travels to its destination have different route information, it 
is conceivable that a message that left the source machine on the shortest route could 
end up following a more circuitous path because of differing tables in the intervening 
gateways. The fewest-hops method also doesn't account for transfer speed, line failures, 
or other factors that could affect the overall time to travel to the destination; it is 
merely concerned with the shortest apparent distance, assuming that all connections 
are equal. To accommodate these factors, another routing method must be used. 

Type of Service Routing

This type of routing depends on the type of routing service available from gateway to 
gateway. This is called type of service (TOS) routing. It is also more formally called 
quality of service (QOS) by OSI. TOS includes consideration for the speed and reliability of 
connections, as well as security and route-specific factors. 

To effect TOS routing, most systems use dynamic updating of tables that reflect traffic 
and link conditions. They also take into account current queue lengths at each 
gateway, because the fastest theoretical route might not matter if the message is 
backlogged in a queue. This information is obtained through the frequent transfer of 
status messages between gateways, especially when conditions deteriorate. 

Dynamic updating of tables can have a disadvantage in that if tables are updated too 
frequently, a message might circulate through a section of the internetwork without 



proper routing to its destination, or proceed through a long and convoluted path. For 
this reason, dynamic updating occurs at regular but not too frequent intervals. To 
prevent stray datagrams from circulating on the internetwork too long, the Time to 
Live information in the IP message header is important. 

The IP header's Time to Live (TTL) field is very important 
to dynamic gateway routing protocols, which is why it is a 
mandatory field. Without it, datagrams could circulate 
throughout the network indefinitely. 

The dynamic nature of TOS routing can sometimes cause a message's fragments to be 
routed in different ways to a destination. For example, if a long message of 10 datagrams 
is being sent by one route, but the routing tables are changed during transmission to 
reflect a backlog, the remainder of the datagrams might be sent via an alternate route. 
This doesn't matter, of course, because the receiving machine reassembles the message in 
the proper order as the datagrams are received. 

Updating Gateway Routing Information

A somewhat simplified example of a dynamic update is useful at this stage. The exact 
communications protocols between gateways are examined in more detail later today. 

Assume that two autonomous networks are connected to each other at two locations, 
as shown in Figure 5.3, with connections to different autonomous networks at other 
locations. The A–C connection and the B–D connection can both be used for routing 
from within the networks, depending on which is the optimal path. Gateway C has a copy 
of gateway A's routing table, and vice versa. Gateways B and D each have copies of the 
other's routing tables, as well. These copies are transmitted at intervals so the 
gateways can maintain an up-to-date picture of the connections available through the 
other gateway. The gateways use EGP to send the messages. (They would use GGP if they 
were core gateways.) 

Figure 5.3. Two interconnected networks. 

Suppose that a gateway link within one of the networks was broken due to a machine or 
connection failure, such as that between gateway C and machine X in Figure 5.3. 
Gateway C would find out about the problem through an IGP message and update its 
routing table to reflect the break, usually by putting the largest legal value for 
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routing length in that entry. (Remember that IGP is a general term for any internal 
network protocol for gateway communications, such as RIP or HELLO.) Gateway C 
transfers its new copy of the routing table to gateway A. 

Routing a message to machine Y would now be impossible through the C–X connection. 
However, because gateway A has the routing information from C, and it exchanges 
routing information with gateway B, which also exchanges with gateway D, any 
message passing through either D or B for machine Y could be rerouted up through 
gateway A, then C, and finally to Y. An EGP message between B–D and A–C would 
indicate that the new route costs less than the maximum value assigned going through 
C–X (which is broken), so the round-about transfer through the four gateways can be 
used. 

EGP messages between gateways are usually sent whenever a connection problem exists 
and the routing information is set to its maximum (worst) value, or when a better 
connection alternative has been discovered for some reason. This can be because of an 
update from a remote gateway's routing table, or the addition of new connections, 
machines, or networks to the system. Whichever happens, an EGP message informs all the 
connected gateways of the changes. 

The IGP and EGPGateway Protocols

Gateways need to know what is happening to the rest of the network in order to route 
datagrams properly and efficiently. This includes not only routing information but also 
the characteristics of subnetworks. For example, if one gateway is particularly slow 
but is the only access method to a subnetwork, other gateways on the network can 
tailor the traffic to suit. 

A GGP is used to exchange routing information between devices. It is important not to 
confuse routing information, which contains addresses, topology, and details on routing 
delays, with the algorithms used to make routing information. Usually the routing 
algorithms are fixed within a gateway and not modified. Of course, as the routing 
information changes, the algorithm adapts the chosen routes to reflect the new 
information. 

GGPs are primarily for autonomous (self-complete) networks. An autonomous system 
uses gateways that are connected in one large network, such as one might find in a 
large corporation. Two kinds of gateways must be considered in an autonomous network. 
The gateways between smaller subnetworks help tie the small systems into the larger 
corporate network, but the gateways for each subnetwork are usually under the 
control of one system (usually in the IS department). These gateways are considered 
autonomous because the connections between gateways are constant and seldom 



change. These gateways communicate through an IGP. 

Large internetworks like the Internet are not as static as corporate systems. Gateways 
can change constantly as the subsidiary networks make changes, and the 
communications routes between gateways are more subject to change, too. For widely 
spread companies, there might be gateways spread throughout the country (or the 
world) that are all part of the same corporate network but use the Internet to 
communicate. The communications between these gateways are slightly different than 
when they are all physically connected together. These gateways communicate 
through an EGP. 

There are fewer rules governing IGPs than EGPs simply because the IGP can handle 
custom-developed applications and protocols within its local network. When the 
Internet is used for gateway-to-gateway communications, the messages must conform to 
the internetwork standards. Also, when connecting two subnetworks, it is possible to 
send only one message to the subnetwork gateway through EGP, which can then be 
duplicated, modified, and propagated to all gateways on the internal system using IGP. 
EGP has formalized rules governing its use. 

Gateway-to-Gateway Protocol (GGP)

GGP is used for communications between core gateways. A recent improvement of the 
protocol, called SPREAD, is starting to be used but is not yet as common as GGP. Even if 
GGP is phased out in favor of SPREAD, it is a useful illustration of gateway-to-gateway 
protocols. 

GGP is a vector-distance protocol, meaning that messages tend to specify a destination 
(vector) and the distance to that destination. Vector-distance protocols are also 
called Bellman-Ford protocols, after the researchers who first published the idea. For 
a vector-distance protocol to be effective, a gateway must have complete information 
about all the gateways on the internetwork; otherwise, computing a distance with a 
fewest-hops type of protocol cannot succeed. 

You might recall from earlier today that core gateways 
have complete information about all other core gateways, so a 
vector-distance protocol works. Non-core gateways don't have 
a complete internetwork map, so GGP-type messages are not 
useful. 



A gateway establishes its connections to other gateways by sending out messages, 
waiting for replies, and then building a table. This is initially accomplished when a 
gateway is installed and has no routing information at all. This aspect of 
communications is not defined within GGP but relies on network-specific messages. Once 
the initial table has been defined, GGP is used for all messages. 

Connectivity with another gateway on the Internet is determined using the K-out-of-N 
method. In this procedure, a gateway sends an echo message to another gateway and 
waits for a reply. It repeats this every fifteen seconds. According to the Internet 
standards, if the gateway does not receive three (K) replies out of four (N) requests, the 
other gateway is considered down, or unusable, and routing messages are not sent to 
that gateway. This process can be repeated at regular intervals. 

If a down gateway becomes active again, the Internet standards require two out of four 
echo messages to be acknowledged. This is called J-out-of-M, where J is two and M is 
four. The Internet-assigned values for J, K, M, and N can be changed for autonomous 
networks, but the standard defines the values for use on the Internet itself. 

Each message between gateways has a sequence number that is incremented with each 
transmitted message. Each gateway tracks its own sequence number for sending to every 
other gateway it is connected to, as well as the incoming sequence numbers from that 
gateway. They are not necessarily the same, because more messages might flow one way 
than the other, although usually each message should have an acknowledgment or 
reply of some type. 

Sequence numbers have important meanings for the messages and are not just for the 
sake of keeping an incremental count of the traffic volume. When a gateway receives a 
message from another gateway, it compares the sequence number in that message to the 
last received sequence number in its internal tables. If the latest message has a higher 
sequence number than the last message received, the gateway accepts the message and 
updates its sequence number to the latest received value. If the number was less than 
the last received sequence number, the message is considered old and is ignored, with an 
error message containing the just-received message sent back. This process is shown in 
Figure 5.4. 

Figure 5.4. Processing sequence numbers in GGP. 

The receiving gateway acknowledges the received message by sending a return message 
that contains the sequence number of the just-received message. The other gateway 
compares that number with the number of its last sent message, and if they are the same, 
the gateway knows that the message was properly received. If the numbers do not 
match, the gateway knows an error occurred and transmits the message again. 

When a message is ignored by the recipient gateway, the sending gateway receives a 
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message with the sequence number of the ignored message. It can then determine which 
messages were skipped and adjust itself accordingly, resending messages that need to be 
sent. 

The GGP message format is shown in Figure 5.5. After it is constructed, it is encapsulated 
into an IP datagram that includes source and target addresses. The first field is a 
message type, which is set to a value of 12 for routing information. The sequence number 
was discussed earlier and provides an incremental counter for each message. The Update 
field is set to a value of 0 unless the sending gateway wants a routing update for the 
provided destination address, in which case it is set to a value of 1. The Number of 
Distances field holds the number of groups of addresses contained in the current 
message. 

Figure 5.5. The GGP message format. 

For each distance group in the message, a distance value and the number of networks 
that can be reached at that distance are provided, followed by all the network address 
identifications. According to the GGP standard, not all the distances need to be 
reported, but the more information supplied, the more useful the message is to each 
gateway. 

GGP does not deal with full Internet addresses specifically, so the host portion of the 
address does not necessarily have to be included in the address, although the network 
address is always provided. This can result in different lengths of addresses in the 
identification field (8, 16, or 24 bits, depending on the type of address). 

Three other formats are used with GGP messages, as shown in Figure 5.6. The 
acknowledgment message uses the Type field to indicate whether the message is a 
positive acknowledgment (type is set to 2) or a negative acknowledgment (type is set to 
10) . The sequence number, as mentioned earlier today, is used to identify the message to 
which the acknowledgment applies. 

Figure 5.6. Other GGP message formats. 

The echo request and echo reply formats are passed between gateways to inform the 
gateways of status changes and to ensure the gateway is up. An echo request has the 
Type field set to the value 8, whereas an echo reply has the Type field set to a value of 
0. Because the address of the sending gateway is embedded in the IP header, it is not 
duplicated in the GGP message. The remaining 24 bits of the message are unused. 

The network interface status message is used by a gateway to ensure that it is able to 
send and receive messages properly. This type of message can be sent to the originating 
gateway itself, with the type field set to a value of 9 and the IP address in the header 
set to the network interface's address. 
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The External Gateway Protocol (EGP)

As mentioned earlier, an EGP is used to transfer information between non-core 
neighboring gateways. Non-core gateways contain complete details about their 
immediate neighbors and the machines attached to them, but they lack information 
about the rest of the network. Core gateways know about all the other core gateways 
but often lack the details of the machines beyond a gateway. 

EGP is usually restricted to information within the gateway's autonomous system. This 
prevents too much information from passing through the networks, especially when 
most of the information that relates to external autonomous systems would be 
unusable to another gateway. EGP therefore imposes restrictions on the gateways 
about the machines EGP passes routing information about. 

Neighbors and EGP

Because EGP was developed to enable remote systems to exchange routing information 
and status messages, the protocol is heavily based in requests or commands followed by 
replies. The four EGP commands and their possible responses are shown in Table 5.2. 

Table 5.2. EGP commands.

Command Name Command Description Response Name Response Description 

Request 
Request that a neighbor 
become a gateway 

Confirm/Refuse 
Agree or refuse the 
request 

Cease 
Request the termination 
of a neighbor 

Cease-Ack Agree to termination 

Hello 
Request confirmation of 
routing to neighbor 
(neighbor reachability) 

IHU Confirms the routing 

Poll 

Request that the neighbor 
provide network 
information (network 
reachability) 

Update 
Provides network 
information 



To understand Table 5.2 properly, you must understand the concept of neighbor to an 
internetwork. Gateways are neighbors if they share the same subnetwork. They might be 
gateways to the same network (such as the Internet) or work with different networks. 
When the two want to exchange information, they must first establish communications 
between each other; the two gateways are essentially agreeing to exchange routing 
information. This process is called neighbor acquisition. 

Neighbor doesn't mean the networks have to be next to each other. They are connected 
by a gateway, but the networks can be on different continents. The term neighbor has 
to do with connections, not geography. 

The process of becoming neighbors is formal, because one gateway might not want to 
become a neighbor at that particular time (for any number of reasons, but usually 
because the gateway is busy). It begins with a Request, which is followed by either an 
acceptance (Confirm) or refusal (Refuse) from the second machine. If the two gateways 
are neighbors, either can break the relationship with a Cease message. 

After two gateways become neighbors, they assure each other that they are still in 
contact by occasionally sending a Hello message, to which the second gateway responds 
with an IHU (I Heard You) message as soon as possible. These Hello/IHU messages can be 
sent at any time. With several gateways involved on a network, the number of Hello 
messages can become appreciable as the gateways continue to remain in touch. This 
process is called neighbor reachability. 

The other message pair sent by EGP is network reachability, in which case one gateway 
sends a Poll message and expects an Update message in response. The response contains a 
list of networks that can be reached through that gateway, with a number 
representing the number of hops that must be made to reach the networks. By assembling 
the Update messages from different neighbors, a gateway can decide the best route to 
send a datagram. 

Finally, an error message is returned whenever the gateway cannot understand an 
incoming EGP message. 

EGP Messages

The layout of the different messages used by EGP are shown in Figure 5.7. The fields 
have the following meanings: 

●     The Version field holds the EGP version number of the sending machine (the 
current version is 2). 



●     The Type field identifies the type of EGP messages. There are ten message types in 
EGP. 

●     The Code field contains a value that identifies the subtype of the message. 

●     The Status field is used with the Type and Code fields to reflect the current 
status of the gateway's state. 

●     The Checksum is calculated for the EGP message in the same manner as other 
TCP/IP headers. 

●     The System Number is an identification of the autonomous system that the sending 
gateway belongs to. 

●     The Sequence Number of the message is an incrementing counter for each message, 
also used to identify a reply to a previous message. 

Figure 5.7. EGP message format. 

The Reason field of the Error message can contain one of the following integers: 

0—Unspecified error 

1—Bad EGP header 

2—Bad EGP data field 

3—Reachability information not available 

4—Excessive polling 

5—No response received to a poll 

Through a combination of the message Type, Code, and Status fields, the purpose and 
meaning of the EGP message can be more accurately determined. Table 5.3 shows all 
codes and status values. 

Table 5.3. EGP messages.

Type Description Code Description Status Description 

1 Update 0 0 Indeterminate 
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1 Up 

2 Down 

128 Unsolicited 

2 Poll 0 0 Indeterminate 

1 Up 

2 Down 

3 Neighbor Acquisition 0 Request 0 Not specified 

1 Confirm 1 Active mode 

2 Refuse 2 Passive mode 

3 Cease 3 Insufficient Resources 

4 Cease-Ack 4 Prohibited 

5 Shutting Down 

6 Parameter Problem 

7 Protocol Violation 

5 Neighbor Reachability 0 Hello 0 Indeterminate 

1 I Heard You 1 Up 

2 Down 

8 Error 0 0 Indeterminate 

1 Up 

2 Down 

128 Unsolicited 

The Status field can indicate whether a gateway is up or down. In the down state, the 
gateway does not perform any routing. The Neighbor Acquisition status indicator can 
show whether the machine is active or passive. When passive, the gateway does not 
generate any Hello commands, but it responds to them. At least one neighbor has to be 
in the active state to issue the Hellos. 

When a list of networks and their distances must be added to an EGP header, it is done in 
the format shown in Figure 5.8. The number of distances in the list is specified, followed 
by entries with the same format giving the distance (number of hops) to the gateway, the 
number of networks that can be reached through that gateway, and the network 



addresses. The number of internal and external gateways in the EGP header tells the 
gateway how many entries are in the list. 

Figure 5.8. Routing information in an EGP header. 

Using EGP, gateways can update each other and keep their routing tables current. A 
similar scheme is used for IGP, although the messages can be custom-designed by the 
network manager and application development team because they are not transmitted 
over the Internet. 

Neighbor Acquisition Messages

A Neighbor Acquisition message (Request, Confirm, and Refuse Acquisition message types) 
is sent when a neighbor is being checked for acquisition. The same message format is used 
whether the particular message is a request, a confirmation, or a refusal. 

The type is set to a value of 3 to indicate that the message is a neighbor acquisition, and 
the Code field provides the details as to the type of Acquisition message, as shown in 
Table 5.4. 

Table 5.4. EGP Acquisition message codes.

Code Description 

0 Request Acquisition 

1 Confirm Acquisition 

2 Refuse Acquisition 

3 Cease 

4 Cease Acknowledgment 

The Status field in the Acquisition message header is set to one of eight possible values 
and is used to provide further information about the request. The valid Status field 
values are shown in Table 5.5. 

Table 5.5. EGP Acquisition message Status values.
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Status Description 

0 Unspecified; used when no other code is applicable 

1 Active; indicates an active status mode 

2 Passive; indicates a passive status mode 

3 Insufficient resources available 

4 Administratively prohibited 

5 
Going down either because of operator intervention or expiration of the t3 
timer 

6 Parameter error with incoming message 

7 
Protocol violation in incoming message or response message is incompatible with 
current machine state 

The EGP Neighbor Acquisition message adds two new fields to the basic EGP message 
header. The 16-bit Hello Interval field specifies the minimum interval between Hello 
command pollings, in seconds. The 16-bit Poll Interval field specifies the minimum 
interval between Poll command pollings, again in seconds. 

Neighbor Reachability Messages

The Neighbor Reachability messages are used to ensure that a neighbor that was 
previously acquired is still active and communicating. No extra fields are added to the 
basic EGP message format shown in Figure 5.7. 

The Type field is set to a value of 5, but the Code field has a value of either 0 for a 
Hello message or 1 for an IHU (I Heard You) response. The Status field can have one of 
three values, shown in Table 5.6. 

Table 5.6. EGP Neighbor Reachability Status field values.

Status Description 

0 Indeterminate; used when no other code is applicable 

1 Neighbor is in an up state 

2 Neighbor is in a down state 



Poll Messages

The Poll messages are used to request network reachability information. An extra two 
fields are added to the basic EGP message format, which are a 16-bit field reserved for 
future use and a 32-bit IP Source Network field. 

The Poll messages have the Type field set to a value of 2 and the Code field set to a 
value of 0. The Status field is set to one of the same three values used in the 
Reachability message, shown in Table 5.6. 

The 16-bit Reserved field attached to the end of the basic EGP message format is ignored 
in the current versions of EGP. A 32-bit IP Source Network field is used to specify the IP 
address of the network about which the gateway is requesting reachability 
information. 

Update Messages

Update messages are sent as a reply to a Poll message and provide information about 
network reachability. The format of the Update message is shown in Figure 5.9 and is 
similar to the GGP format discussed earlier. 

Figure 5.9. EGP Update message format. 

The Type of an Update message is set to 1, and the Code is set to 0. The Status field is set 
to one of the values shown in Table 5.7. (The values are the same as those for 
Reachability and Poll messages except for the addition of one value.) 

Table 5.7. EGP Update message Status field values.

Status Description 

0 Indeterminate; used when no other code is applicable 

1 Neighbor is in an up state 

2 Neighbor is in a down state 
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128 Unsolicited message 

After the familiar EGP header information are three new fields. The number of internal 
gateways and number of external gateways fields specify the number of interior and 
exterior gateways that are reported in the message, respectively. The IP Source 
Network Address field contains the IP address of the network to which the information 
relates. 

Following the three gateway summaries and the usual header are one or more sets of 
information about each gateway the current system is sending information about. These 
are called gateway blocks because each set of fields refers to one gateway. The first 
field is the gateway's IP address. The Number of Distances field provides the number of 
distances that are reported in the gateway block and the number of networks that lie 
at that distance. Then, for each distance specified, the IP network address of each 
network is provided. Many blocks of gateway information can be provided in an Update 
message. 

Error Messages

The final EGP message is the Error message, which has the same format as the basic EGP 
message, with two fields attached. The 16-bit first field is reserved. Following this is a 
96-bit field that contains the first 96 bits of the message that generated the error. 

EGP to GGP Messages

Core gateways use GGP, and non-core gateways use EGP, so there must be some method 
for the two to communicate with each other to find out about hidden machines and 
networks that lie beyond their routing tables. This can be shown by Figure 5.10, where 
gateway A is a core gateway leading from the internetwork to a network that has non-
core gateways leading to two other networks. Another gateway on the internetwork 
does not have information about the networks and gateways past the core gateway, 
unless specifically updated about them through a request. 

Figure 5.10. Core and non-core gateways. 

The Internet uses a method by which any autonomous (non-core) gateway can send 
reachability information to other systems, which must also go to at least one core 
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gateway. If there is a larger autonomous network, one gateway usually assumes the 
responsibility for handling this reachability information. In Figure 5.10, gateway A is 
responsible for sending information about the three networks that lead from it, as well 
as the two non-core gateways. 

EGPs use a polling process to keep themselves aware of their neighbors as they become 
active or go down, and to exchange routing and status information with all their 
neighbors. EGP is also a state-driven protocol, meaning that it depends on a state table 
containing values that reflect gateway conditions and a set of operations that must be 
performed when a state table entry changes. There are five states, as shown in Table 5.8. 

Table 5.8. EGP states.

State Description 

0 Idle 

1 Acquisition 

2 Down 

3 Up 

4 Cease 

The meanings of each of these EGP states follow: 

●     An idle state means the gateway is not involved in any activity and has no 
resources allocated to it. It usually responds to a message to initialize itself but 
ignores all other messages unless it switches to either the down or acquisition 
states. 

●     An acquisition state enables a gateway to transmit messages but not act as a full 
messaging gateway. It can receive messages and change to either down or idle 
states. 

●     The down state is when the gateway is not operational as far as polling 
operations are concerned. Messages are neither received nor generated. 

●     The up state is used whenever a gateway is processing and responding to all EGP 
messages it receives and can transmit messages. 

●     A gateway is in cease state when the gateway ceases all updating operations but 
can still send and receive Cease and Cease Acknowledgment messages. 



All EGP messages fall into one of three categories: commands, responses, or indications. 
A command usually requires an action to be performed, whereas a response is a reply to a 
command to perform some action. An indication shows current status. Command-response 
signals are shown in Table 5.9. 

Table 5.9. EGP commands and their responses.

Command Response 

Request Confirm 

Refuse none 

Error none 

Cease Cease Ack 

Error none 

Hello IHU (I Heard You) 

Error none 

Poll Update 

Error none 

EGP State Variables and Timers

As mentioned earlier, EGP is state-driven, which means that the current state of the 
system depends on the last message received, or the condition of one of the software 
timers. EGP maintains a state table with several parameters that can be referenced to 
determine actions. These values usually refer to delays between sending or receiving 
messages of a specific type. In addition, a set of timers is maintained for ensuring that 
intervals between events are reasonable. The EGP parameters and timers are shown in 
Table 5.10, using the names employed in the RFC that defines EGP. 

Table 5.10. EGP parameters and timers.

Name Description 

M Hello polling mode. 



P1 
Minimum interval acceptable between successive received Hello commands. 
Default is 30 seconds. 

P2 
Minimum interval acceptable between successive received Poll commands. 
Default is 120 seconds. 

P3 
Interval between Request or Cease command retransmissions. Default is 30 
seconds. 

P4 
Interval during which the state variables are maintained without receiving an 
incoming message when in the up or down state. Default is one hour. 

P5 
Interval during which the state variables are maintained without receiving an 
incoming message when in the cease or acquisition state. Default is 2 minutes. 

R Receive sequence number. 

S Send sequence number. 

T1 Interval between Hello command retransmissions. 

T2 Interval between Poll command retransmissions. 

T3 Interval during which reachability attempts are counted. 

t1 Retransmission timer for Request, Hello, and Cease messages. 

t2 Retransmission timer for Poll messages. 

t3 Abort timer. 

Many of the state parameters are set during the initial establishment of a connection 
between neighbors. The exceptions are the P1 through P5 values, which are established 
by the host system and are not modified by the neighbors. The send sequence number is 
determined only after a message has been received from the other gateway. 

A full discussion of the changes between EGP states and the events that occur when a 
state change occurs is longer than this book and is not of relevance to this level of 
discussion. Therefore, the original RFC should be consulted for full state condition 
information. It is useful at this point simply to be aware of the state-driven nature of 
EGP and to understand that the state can be changed by a message reception, lack of a 
reply to a message, or expiration of a timer. 

Interior Gateway Protocols (IGP)



There are several IGPs in use, none of which have proven themselves dominant. Usually, 
the choice of an IGP is made on the basis of network architecture and suitability to the 
network's software requirements. Earlier today, RIP and HELLO were mentioned. Both 
are examples of IGPs. Together with a third protocol called Open Shortest Path First 
(OSPF), these IGPs are now examined in more detail. 

Both RIP and HELLO calculate distances to a destination, and their messages contain 
both a machine identifier and the distance to that machine. In general, messages tend to 
be long, because they contain many entries for a routing table. Both protocols are 
constantly connecting between neighbors to ensure that the machines are active and 
communicating, which can cause network traffic to build. 

The Routing Information Protocol (RIP)

The Routing Information Protocol found wide use as part of the University of 
California at Berkeley's LAN software installations. Originally developed from two 
routing protocols created at Xerox's Palo Alto Research Center, RIP became part of 
UCB's BSD UNIX release, from which it became widely accepted. Since then, many 
versions of RIP have been produced, to the point where most UNIX vendors have their 
own enhanced RIP products. The basics are now defined by an Internet RFC. 

RIP uses a broadcast technology (showing its LAN heritage). This means that the 
gateways broadcast their routing tables to other gateways on the network at regular 
intervals. This is also one of RIP's downfalls, because the increased network traffic and 
inefficient messaging can slow networks down compared to other IGPs. RIP tends to 
obtain information about all destinations in the autonomous system to which the 
gateways belong. Like GGP, RIP is a vector-distance system, sending a network address 
and distance to the address in its messages. 

A machine in a RIP-based network can be either active or passive. If it is active, it sends 
its routing tables to other machines. Most gateways are active devices. A passive 
machine does not send its routing tables but can send and receive messages that affect 
its routing table. Most user-oriented machines (such as PCs and workstations) are 
passive devices. RIP employs the User Datagram Protocol (UDP) for messaging, employing 
port number 520 to identify messages as originating with RIP. 

The format of the RIP messages is shown in Figure 5.11. The message header is composed of 
three fields for the command (set to 1 if a request and 2 if a response), the version 
number of the RIP protocol, and an unused reserved field. The rest of the message 
contains address information. Each set begins with an identifier of the family protocol 
used (RIP is not specifically for the Internet's protocols, but if used on the Internet this 
value is set to 2) and a set of network IDs. There are 96 bits available for the network 



address, of which only a maximum of 32 are necessary for an Internet address. The last 
field is a metric value that usually identifies the number of hops to the network. 

Figure 5.11. RIP message format. 

A Request message is usually sent to another gateway when a routing update is needed. 
When a request is received, the system examines the message to check each network 
address provided. If its routing table has a distance to that network address, it is placed 
in the corresponding metric field in the response. If there is no entry in the local 
routing table, no value is returned. One convention in common use is to code the family 
as 1 and the metric field as 16. When this is received, the message is interpreted as a 
request for the entire routing table. 

Each RIP-based machine in the network maintains a routing table, with an entry for 
each machine that it can communicate with. The table has entries for the target's IP 
address, its distance, the IP address of the next gateway in the path to the target, a 
flag to show whether the route has recently been updated, and a set of timers that 
control the route. The distance is expressed as a number of hops required to reach the 
target and has a value from 1 to 15. If the target is unreachable, a value of 16 is set. 

The timers involved with RIP are devoted to each possible route in the routing table. A 
time-out timer is set when the route is initialized and each time the route is updated. If 
the timer expires (the default setting is 180 seconds) before another update, the route is 
considered unreachable. A second timer, called the garbage-collection timer, takes 
over after the time-out timer and marks when the route is completely expunged from 
the routing table. The garbage-collection timer has a default value of 120 seconds. If a 
request for a routing update is received after the time-out timer has expired but before 
the garbage-collection timer has expired, the entry for that gateway is sent but with 
the maximum value for the route value. After the garbage-collection timer has expired, 
the route is not sent at all. 

A response timer triggers a set of messages every 30 seconds to all neighboring machines, 
in an attempt to update routing tables. These messages are composed of the machine's IP 
address and the distance to the recipient machine. 

The HELLO Protocol

The HELLO protocol is used often, especially where TCP/IP installations are involved. 
It is different from RIP in that HELLO uses time instead of distance as a routing factor. 
This requires the network of machines to have reasonably accurate timing, which is 
synchronized with each machine. For this reason, the HELLO protocol depends on clock 
synchronization messages. 
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The format of a HELLO message is shown in Figure 5.12. The primary header fields are as 
follows: 

●     A checksum of the entire message 

●     The current date of the sending machine 

●     The current time of the sending machine 

●     A timestamp used to calculate round-trip delays 

●     An offset that points to the following entries 

●     The number of hosts that follow as a list 

Figure 5.12. HELLO message format. 

Following the header are several entries with a delay estimate to the machine and an 
offset, which is an estimate of the difference between the sending and receiving clocks. 
The offsets are important because HELLO is a time-critical protocol, so the offset 
enables correction between times on different machines. 

The timestamp on messages is used by machines that the message passes through to 
calculate delays in the network. In this manner, a routing table based on realistic 
delivery times can be constructed. 

The Open Shortest Path First (OSPF) Protocol

The Open Shortest Path First protocol was developed by the Internet Engineering Task 
Force, with the hope that it would become the dominant protocol within the Internet. 
In many ways, the name "shortest path" is inaccurate in describing this protocol's 
routing process (both RIP and HELLO use a shortest path method—RIP based on distance 
and HELLO on time). A better description for the system would be "optimum path," in 
which several criteria are evaluated to determine the best route to a destination. The 
HELLO protocol is used for passing state information between gateways and for passing 
basic messages, whereas the Internet Protocol (IP) is used for the network layer. 

OSPF uses the destination address and type of service (TOS) information in an IP 
datagram header to develop a route. From a routing table that contains information 
about the topology of the network, an OSPF gateway (more formally called a router in 
the RFC, although both terms are interchangeable) determines the shortest path using 
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cost metrics, which factor in route speed, traffic, reliability, security, and several other 
aspects of the connection. Whenever communications must leave an autonomous 
network, OSPF calls this external routing. The information required for an external 
route can be derived from both OSPF and EGP. 

There are two types of external routing with OSPF. A Type 1 route involves the same 
calculations for the external route as for the internal. In other words, the OSPF 
algorithms are applied to both the external and internal routes. A Type 2 route uses 
the OSPF system only to calculate a route to the gateway of the destination system, 
ignoring any routes of the remote autonomous system. This has an advantage in that it 
can be independent of the protocol used in the destination network, which eliminates a 
need to convert metrics. 

OSPF enables a large autonomous network to be divided into smaller areas, each with 
its own gateway and routing algorithms. Movement between the areas is over a 
backbone, or the parts of the network that route messages between areas. Care must be 
taken to avoid confusing OSPF's areas and backbone terminology with those of the 
Internet, which are similar but do not mean precisely the same thing. OSPF defines 
several types of routers or gateways: 

●     An Internal Router is one for which all connections belong to the same area, or 
one in which only backbone connections are made. 

●     A BORDER Router is a router that does not satisfy the description of an Internal 
Router (it has connections outside an area). 

●     A Backbone Router has an interface to the backbone. 

●     A Boundary Router is a gateway that has a connection to another autonomous 
system. 

OSPF is designed to enable gateways to send messages to each other about internetwork 
connections. These routing messages are called advertisements, which are sent through 
HELLO update messages. Four types of advertisements are used in OSPF: 

●     A Router Links advertisement provides information on a local router's (gateway) 
connections in an area. This message is broadcast throughout the network. 

●     A Network Links advertisement provides a list of routers that are connected to a 
network. It is also broadcast throughout the network. 

●     A Summary Links advertisement contains information about routes outside the 
area. It is sent by BORDER routers to their entire area. 

●     An Autonomous System Extended Links advertisement contains information on 
routes in external autonomous systems. It is used by boundary routers but covers 



the entire system. 

OSPF maintains several tables for determining routes, including the protocol data 
table (the high-level protocol in use in the autonomous system), the area data table or 
backbone data table (which describes the area), the interface data table (information 
on the router-to-network connections), the neighbor data table (information on the 
router-to-router connections), and a routing data table (which contains the route 
information for messages). Each table has a structure of its own, the details of which 
are not needed for this level of discussion. Interested readers are referred to the RFC 
for complete specifications. 

OSPF Packets

As mentioned earlier, OSPF uses IP for the network layer. The OSPF specifications 
provide for two reserved multicast addresses: one for all routers that support OSPF 
(224.0.0.5) and one for a designated router and a backup router (224.0.0.6). The IP 
protocol number 89 is reserved for OSPF. When IP sends an OSPF message, it uses the 
protocol number and a Type of Service (TOS) field value of 0. Usually, the IP precedence 
field is set higher than normal IP messages, also. 

OSPF uses two header formats. The primary OSPF message header format is shown in 
Figure 5.13. Note that the fields are not shown in their scale lengths in this figure for 
illustrative purposes. The Version Number field identifies the version of the OSPF 
protocol in use (currently version 1). The Type field identifies the type of message and 
might contain a value from those shown in Table 5.11. 

Figure 5.13. OSPF message header format. 

Table 5.11. OSPF header Type values.

Type Description 

1 Hello 

2 Database description 

3 Link state request 

4 Link state update 

5 Link state acknowledgment 
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The Packet Length field contains the length of the message, including the header. The 
Router ID is the identification of the sending machine, and the Area ID identifies the 
area the sending machine is in. The Checksum field uses the same algorithm as IP to 
verify the entire message, including the header. 

The Authentication Type (AUType) field identifies the type of authentication to be used. 
There are currently only two values for this field: 0 for no authentication, and 1 for a 
password. The Authentication field contains the value that is used to authenticate the 
message, if applicable. 

The second header format used by OSPF is for Link State advertisements only; it is 
shown in Figure 5.14. All Link State advertisements use this format, which identifies 
each advertisement to all routers. This header mirrors the topologic table. 

Figure 5.14. OSPF Link State advertisement header format. 

The Link State Age field contains the number of seconds since the Link State 
advertisement originated. The Options field contains any IP Type of Service (TOS) 
features supported by the sending machine. The Link State Type identifies the type of 
link advertisement, using one of the values shown in Table 5.12. The value in the Link 
State Type field further defines the format of the advertisement. 

Table 5.12. Link State advertisement header Type values.

Value Description 

1 Router links (router to area) 

2 Network links (router to network) 

3 Summary link (information on the IP network) 

4 Summary link (information on autonomous system BORDER router) 

5 AS external link (external to autonomous system) 

The Link State ID field identifies which portion of the internetwork is described in the 
advertisement. The value depends on the Link State Type field and can contain IP 
addresses for networks or router IDs. The Advertising Router field identifies the 
originating router. The Link State Sequence Number is an incrementing number used to 
prevent old or duplicate packets from being interpreted. The Checksum field uses an IP 
algorithm for the entire message, including the header. Finally, the Length field 
contains the size of the advertisement, including the header. 
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HELLO Packets

Both types of OSPF headers are further encapsulated by the HELLO protocol, which is 
used for messaging between neighboring routers. The information in the HELLO header 
sets the parameters for the connection. The entire HELLO packet format is shown in 
Figure 5.15. 

Figure 5.15. OSPF HELLO packet format. 

After the OSPF header is the Network Mask field, which is dependent on the interface. 
The Hello Interval is the number of seconds between subsequent Hello packets from the 
same router. The Options field is for IP's Type of Service supported values. The Router 
Priority field defines whether the router can be designated as a backup. If the field has 
a 0 value, the router cannot be defined as a backup. The Dead Interval is the number of 
seconds before a router is declared to be down and unavailable. The Designated and 
Backup Router fields hold the addresses of the designated and backup routers, if there 
are any. Finally, each neighbor has a set of fields that contain the address of each 
router that has recently (within the time specified by the Dead Interval) sent Hello 
packets over the network. 

When this type of message is received by another router and it has been validated as 
containing no errors, the neighbor information can be processed into the neighbor data 
table. 

Another message that is used to initialize the database of a router is the database 
description packet. It contains information about the topology of the network (either in 
whole or in part). To provide database description packet service, one router is set as the 
master, and the other is the slave. The master sends the database description packets, 
and the slave acknowledges them with database description responses. 

The format of the database description packet is shown in Figure 5.16. After the OSPF 
header is a set of unused bits, followed by three 1-bit flags. When the I (initial) bit is set 
to 0, it indicates that this packet is the first in a series of packets. The M (more) bit, when 
set to 1, means that more database description packets follow this one. The MS 
(master/slave) bit indicates the master/slave relationship. When it has a value of 1 it 
means that the router that sent the packet is the master. A 0 indicates that the sending 
machine is the slave. The Data Descriptor Sequence Number is an incrementing counter. 
The rest of the packet contains Link State advertisements as seen in Figure 5.14. 

Figure 5.16. The database description packet layout. 
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Link State Request and Update Packets

The Link State Request packet asks for information about a topological table from a 
database, whereas the Update packet can provide topological information of the types 
shown in Table 5.11. The Request packet is usually sent when an entry in the router's 
topological table is corrupted, missing, or out of date. The format of the Link State 
Request packet is shown in Figure 5.17. The Link State Request packet contains the OSPF 
header and a block of three repeating fields for the Link State Type, Link State ID, and 
Advertising Router. 

Figure 5.17. OSPF Link State Request packet format. 

The Link State Update packet has four formats, depending on the link state type: router 
links, network links, summary links, or autonomous systems external links. The Router 
Links advertisement packet is sent to neighbors periodically and contains fields for each 
router link and the type of service provided in each link, as shown in Figure 5.18. 

Figure 5.18. OSPF Router Links advertisement packet format. 

After the OSPF header and the Link State advertisement header are two single bit flags 
surrounded by 6- and 8-bit unused fields. The E (external) flag, when set to 1, indicates 
that the router is an autonomous systems (AS) boundary router. The B (border) flag, 
when set to 1, indicates that the router is an area BORDER router. Following the 
unused 8-bit area is a field for the number of links (advertisements) in the message. 
Following this, the links are provided in sequence, one link to a block. 

Each Link State advertisement block in the Router Links advertisement packet has a 
field for the Link ID (the type of router, although the value is dependent on the Type 
field later in the block), the Link Data (whose value is an IP address or a network mask, 
depending on the Type field's setting), the Type field (a value of 1 indicates a connection 
to another router, 2 a connection to a transit network, and 3 a connection to a stub 
network), and the Number of TOS field, which shows the number of metrics for the link 
(at least one must be provided, which is called TOS 0). Then, a repeating block is 
appended for each TOS, providing the type and the metric. 

The other three formats available are the Network Links advertisement, Summary Links 
advertisement, and Autonomous Systems (AS) External Links advertisement. The formats 
of these advertisements are shown in Figure 5.19. The fields have all been described 
earlier in this section. 

Figure 5.19. OSPF Network, Summary, and AS Links advertisement layouts. 
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The last packet involved in OSPF is the Link State acknowledgment packet, which is 
required when a Link State advertisement has been received correctly. The layout of 
the acknowledgment packet is shown in Figure 5.20. The fields following the OSPF 
header are for the Link State Type, Link ID, Advertising Router ID, Link State Sequence 
Number, Link State Checksum value, and Link State Age, all of which have been 
mentioned earlier. 

Figure 5.20. Link State acknowledgment packet layout. 

Summary

Today I looked at the gateway protocols used within the TCP/IP family specifically, as 
well as those in general use on the Internet and most networks. Gateways are a 
critical component for forwarding information from one network to another. Without 
gateways, each machine on the network would require a full map of every other 
machine on the internetwork. 

As I have shown, there are several protocols of importance, depending on the role of the 
gateway. I also looked at the use of bridges, routers, and brouters in a network, and the 
role that each of these can play. With this material, I can leave the subject of 
gateways. Except for some message passing and administration material, you now know 
all you need about gateway protocols used with TCP/IP. 

Q&A

What is a boundary gateway? 

A boundary gateway sits between two networks within a larger internetwork, as would 
be found in a large corporation. The boundary gateways mark the edges (or boundaries) 
of each LAN, passing message to other LANs within the larger internetwork. Boundary 
gateways do not communicate with the networks outside the organization. This task is 
performed by exterior gateways. 

How are sequence numbers used to control status messages within GGP? Explain 
for both the sending and receiving gateways. 

The sending gateway sends packets with an incrementing sequence number. The 
destination gateway receives each packet and echoes back the sequence number in a 
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message. If the destination gateway receives the next packet with a sequence number 
that does not follow the one last received, an error message is returned to the sender 
with the sequence number of the last packet in it. If the sequence number is correct, an 
acknowledgment is sent. As the sending gateway receives packets back from the 
destination, it compares the sequence number in the packet to its own internal counter. 
If the sequence number in the destination machine's packet does not match, the packet 
that would have been next in sequence from the last correctly received packet is 
resent. 

What is a core gateway? 

A core gateway is one that resides as an interface between a network and the 
internetwork. A non-core gateway is between two LANs that are not connected to the 
larger internetwork. 

Protocol conversion takes place in which of the following: gateways, routers, 
bridges, or brouters? 

Gateways perform protocol conversion. They have to because they can join two 
dissimilar network types. Some recent routers and brouters are capable of protocol 
conversion. 

What are the three types of routing table? 

Routing tables can be fixed (a table that is modified manually every time there is a 
change), dynamic (one that modifies itself based on network traffic), or fixed central 
(one downloaded at intervals from a central repository, which can be dynamic). 

Quiz

1.  Define the role of gateways, routers, bridges, and brouters. 

2.  What is a packet-switched network? 

3.  What is the difference between interior and exterior neighbor gateways? 

4.  What are the advantages and disadvantages of the three types of routing tables? 

5.  What is the HELLO protocol used for? 
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In the last five days you have seen the architecture of TCP/IP, as well as both the 
Internet Protocol and the Transmission Control Protocol in considerable detail. 
Building on these two protocols is a layer of application-layer protocols that are 
commonly associated with TCP/IP. Today I look at the most common application layer 
protocols: Telnet, File Transfer Protocol (FTP), Trivial File Transfer Protocol (TFTP), 
and Simple Mail Transfer Protocol (SMTP), as well as a suite of tools called the 
Berkeley r-utilities. 

To cover all four protocols in complete detail would require several hundred pages, so 
today I examine the protocols' most important aspects, including their purposes, their 
relations to TCP and IP, their control codes and behavior, and their typical usage. Each 
of the four application layer protocols has advantages that make it ideally suited for a 
particular purpose. I hope that by the end of the day you will understand why they are 
used and how they fit into the TCP/IP world. 

Telnet

The Telnet (telecommunications network) program is intended to provide a remote login 
or virtual terminal capability across a network. In other words, a user on machine A 
should be able to log into machine B anywhere on the network, and as far as the user is 
concerned, it appears that the user is seated in front of machine B. The Telnet service is 
provided through TCP's port number 23 (see Table 4.1 or Appendix D, "Well Known Port 
Numbers," for the TCP port numbers). The term Telnet is used to refer to both the 
program and the protocol that provide these services. 

Telnet was developed because at one time the only method of enabling one machine to 
access another machine's resources (including hard drives and programs stored there) 
was to establish a link using communications devices such as modems or networks into 
dedicated serial ports or network adapters. This is a little more complicated than might 
appear at first glance because of the wide diversity of terminals and computers, each 
with their own control codes and terminal characteristics. When directly connected to 
another machine, the machine's CPU must manage the translation of terminal codes 
between the two, which puts a hefty load on the CPU. With several remote logins 
active, a machine's CPU can spend an inordinate amount of time managing the 
translations. This is especially a problem with servers that can handle many 
connections at once: if each had to be handled with full terminal translation, the 
server CPU could be bogged down just performing this function. 

Telnet alleviates this problem by embedding the terminal characteristic sequences 
within the Telnet protocol. When two machines communicate using Telnet, Telnet 
itself can determine and set the communications and terminal parameters for the session 
during the connection phase. The Telnet protocol includes the capability not to support 



a service that one end of the connection cannot handle. When a connection has been 
established by Telnet, both ends have agreed upon a method for the two machines to 
exchange information, taking the load off the server CPU for a sizable amount of this 
work. 

Usually, Telnet involves a process on the server that accepts incoming requests for a 
Telnet session. On UNIX systems, this process is called telnetd. On Windows NT and 
other PC-based operating systems, a Telnet Server program is usually involved. The 
client (the end doing the calling) runs a program, usually called telnet, that attempts 
the connection to the server. A relative of the telnet program is the program rlogin, 
which is common on UNIX machines and which I look at later today; see the section 
titled "The Berkeley Utilities." 

The rlogin program provides almost identical 
functionality to Telnet and adds support for the UNIX 
environment. Many machines, especially UNIX workstations, 
act as both client and server simultaneously, enabling a user 
to log into other machines on the network and other users to 
log into the user's machine. 

Telnet Connections

The Telnet protocol uses the concept of a network virtual terminal, or NVT, to define both 
ends of a Telnet connection. Each end of the connection (each NVT) has a logical 
keyboard and printer. The logical printer can display characters, and the logical 
keyboard can generate characters. The logical printer is usually a terminal screen, 
whereas the logical keyboard is usually the user's keyboard, although it could be a file 
or other input stream. These terms are also used in the File Transfer Protocol (FTP) and 
Simple Mail Transfer Protocol (SMTP). Figure 6.1 illustrates the NVT and logical 
keyboard and printer. 

Figure 6.1. A network virtual terminal for Telnet. 

The Telnet protocol treats the two ends of the connection as NVTs. The two programs 
at either end (telnet and telnetd for a UNIX server) manage the translation from 
virtual terminals to actual physical devices. The concept of virtual terminals enables 
Telnet to interconnect to any type of device, as long as a mapping is available from the 
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virtual codes to the physical device. One advantage of this approach is that some 
physical devices cannot support all operations, so the virtual terminal does not have 
those codes. When the two ends are establishing the connection, the lack of these codes 
is noted, and sequences that would use them are ignored. This process is 
straightforward: one end asks whether the function is supported, and the other replies 
either positively or negatively. If it is supported, the necessary codes are sent. The list 
of supported functions is covered quickly in this manner. 

When a connection is established through Telnet, telnetd (or whatever program is 
acting as the Telnet server) starts a process on the server for running applications. 
Every keystroke in a Telnet session must go through several different processes, as 
shown in Figure 6.2. Each keystroke goes through telnet, telnetd, and the applications 
that are used during the Telnet session. Some applications want to communicate 
through a terminal device, so the remote system runs a pseudo-TTY driver that acts like 
a terminal to the application. If a windowed interface such as X or Motif is used on the 
host and remote machines, the systems must be instructed to enable windowing 
information to be passed back and forth; otherwise, the remote machine tries to open the 
windows on the server. 

Figure 6.2. A Telnet connection. 

To start Telnet, you must provide either the name or the IP address of the machine to be 
connected with. The name can be used only if the system has a means of resolving the 
name into its IP address, such as with the Domain Name System. A port name can usually 
be used to connect to a specific service, but this is used infrequently. For example, to 
connect to a machine with the IP address 205.150.89.1, you would enter this command: 

telnet 205.150.89.1

If the system had the name darkstar, which was resolvable into its IP address, you could 
issue this command: 

telnet darkstar

If no name, address, or port is specified, Telnet enters its command mode and waits for 
specific instructions. When the connection is established, a user ID and password are 
requested. You can log in with any user ID that is valid on the remote system (it does 
not have to be the same user ID you have on the local system). A typical connection to a 
UNIX server looks like this: 

telnet 205.150.89.1
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Trying...

Connected to tpci

Escape character is '^]'.

HP-UX tpci A.09.01 A 9000/720 (ttys2)

login: tparker

password: xxxxxxxx

$

As you can see in the preceding code, Telnet tried to connect to the remote system, told 
you it was connected, then set up the communications parameters between the two 
systems. When that was done, the login prompt was displayed (as on any UNIX terminal), 
followed by a password request. If the login and password are enabled, the UNIX shell 
prompt (a dollar sign) is shown to indicate that the remote machine is now active. 

You can use a machine name as part of the Telnet command only if the system has a 
means of resolving the name to its IP address. If not, no connection is established, 
although Telnet might remain in command mode. To exit, use Ctrl+D or the break 
sequence displayed as part of the start-up message. 

You can enter Telnet's command mode at any time, usually by using the Ctrl+] key 
combination (hold down Ctrl and press the right bracket key). If you are currently 
connected to an active session when you enter command mode, Telnet waits for you to 
issue a command, execute it, and then return to the session automatically. Command 
mode lets you enter commands relative to the client (the machine you are physically in 
front of) instead of the server. You might need to do this to change directories or run a 
local application, for example. 

Once the connection is successfully established, your session behaves as though you 
were on the remote machine, with all valid commands of that operating system. All 
instructions are relative to the server, so a directory command shows the current 
directory on the server, not the client. To see the client's directory, you would have to 
enter command mode. A sample Telnet login and logout session, calling from one UNIX 
workstation (merlin) to a server (tpci_hpws4, a name that can be resolved by the name 
server) follows: 

merlin> telnet tpci_hpws4

Trying...



Connected to tpci_hpws4.

Escape character is '^]'.

HP-UX tpci_hpws4 A.09.01 A 9000/720 (ttys2)

login: tparker

password: xxxxxxxx

tpci_hpws4-1> pwd

/u1/tparker

tpci_hpws4-2> cd docs

tpci_hpws4-3> pwd

/u1/tparker/docs

tpci_hpws4-2> <Ctrl+d>

Connection closed by foreign host.

merlin>

Once you are connected to the remote machine, the session behaves exactly as if you 
were on that machine. To log out of the remote session, simply issue the logout command 
(in the previous example, the UNIX Ctrl+D combination), and you are returned to your 
local machine. The telnet program is useful when you are on an under-powered machine 
or terminal and you want to use another machine's processing capabilities, or if another 
machine has a particular tool that you don't want to load on your local machine. 

Telnet utilities are available for many different operating systems. Figure 6.3 shows a 
Windows for Workgroups Telnet application (part of a larger TCP/IP application suite 
from NetManage called ChameleonNFS, which I look at in much more detail on Day 10, 
"Setting Up a Sample TCP/IP Network: DOS and Windows Clients") logging into an SCO 
UNIX server. Even when the local machine has a graphical interface such as Windows, 
you can most likely connect to remote machines using a character-based interface. 

Figure 6.3. Using Telnet from a Windows for Workgroups machine. 

If the calling and receiving workstations use a graphical user interface (GUI) such as 
Motif or X, and you want to use them instead of a character-based interface, you must 
instruct both ends to use the local terminal for windowing (because you can't see a 
window on the remote terminal). Locally, a program is run that instructs the operating 
system to enable other machines to display directly onto the screen, and the remote 
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must have an instruction to redirect windowing commands to the local screen. Many 
UNIX systems perform this function like this: 

tpci_server-1> xhost +

tpci_server-2> telnet tpci_hpws4

Trying...

Connected to tpci_hpws4.

Escape character is '^]'.

HP-UX tpci_hpws4 A.09.01 A 9000/720 (ttys2)

login: tparker

password: xxxxxxxx

tpci_hpws4-1> setenv DISPLAY tpci_server:0.0

tpci_hpws4-2> <Ctrl+d>

Connection closed by foreign host.

tpci_server-3>

The UNIX xhost + instruction tells the local machine to enable the remote system to 
control windows on the local screen (which it normally is not allowed to do). The 
instruction setenv DISPLAY machine_name executed on the remote UNIX machine sets 
the UNIX shell environment variable DISPLAY to the local screen. Whenever a window 
must be opened (as when a Motif application is run), the windowing appears on the local 
screen, and the processing is conducted on the remote. These examples are for UNIX, but 
a similar sequence works on other machines and GUIs. 

Complete applications that provide this capability to run local X and Motif windows on 
a Windows, Windows 95, or Windows NT machine are available from several commercial 
vendors. For example, Figure 6.4 shows an application running on a remote server called 
mandel that draws Mandelbrot figures. The server has been instructed to display the 
window on the local Windows for Workgroups machine using an X client package for 
Windows machines. The server passes all information about the size, position, and colors 
of the window, as well as instructions for drawing the contents to the local X client. 
The window appears on the Windows for Workgroups machine exactly as it would on the 
UNIX server. 

Figure 6.4. Using an X client to show UNIX X windows on a PC. 
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Telnet Commands

Several service options are available when a Telnet session is established. Their values 
can be changed during the course of a Telnet session if both ends agree (one end might 
be prevented from enabling or disabling a service because of administrator or resource 
settings). There are four verbs used by the Telnet protocol to offer, refuse, request, and 
prevent services: will, won't, do, and don't, respectively. The verbs are designed to be 
paired (will/won't and do/don't). To illustrate how these are used, consider the 
following Telnet session, which has the display of these verbs turned on using the 
telnet command toggle options: 

tpci_server-1> telnet

telnet> toggle options

Will show option processing.

telnet> open tpci_hpws4

Trying...

Connected to tpci_hpws4.

Escape character is '^]'.

SENT do SUPPRESS GO AHEAD

SENT will TERMINAL TYPE (don't reply)

SEND will NAWS (don't reply)

RCVD do 36 (reply)

sent won't 36 (don't reply)

RECD do TERMINAL TYPE (don't reply)

RCVD will SUPPRESS GO AHEAD (don't reply)

RCVD do NAWS (don't reply)

Sent suboption NAWS 0 80 (80) 0 37 (37)



Received suboption Terminal type - request to send.

RCVD will ECHO (reply)

SEND do ECHO (reply)

RCVD do ECHO (reply)

SENT won't ECHO (don't reply)

HP-UX tpci_hpws4 A.09.01 A 9000/720 (ttys2)

login:

The Telnet commands are used by the protocol, not by 
users (although you can issue them during a Telnet session, but 
this is usually used only for diagnostic purposes). There are no 
inherent Telnet user commands, other than the command mode 
toggle, because Telnet's role is to connect you to a remote 
system and let you use it directly. 

A partial set of Telnet command codes is shown in Table 6.1. Additional codes are used 
to represent printer functions such as horizontal and vertical tabs and form feeds, but 
these have been left off the table for brevity's sake. Part of the Telnet command code 
set includes six terminal functions (IP, AO, AYT, EC, EL, and GA) that are common across 
most terminal definitions, so they are formally defined in the Telnet standard. 

Table 6.1. Telnet command codes.

Code Value Description 

Abort Output (AO) 245 
Runs process to completion but does not send the 
output 

Are you there (AYT) 246 
Queries the other end to ensure that an 
application is functioning 

Break (BRK) 243 Sends a break instruction 

Data Mark 242 Data portion of a Sync 

Do 253 
Asks for the other end to perform or an 
acknowledgment that the other end is to perform 



Don't 254 
Demands that the other end stop performing or 
confirms that the other end is no longer 
performing 

Erase Character (EC) 247 Erases a character in the output stream 

Erase Line (EL) 248 Erases a line in the output stream 

Go Ahead (GA) 249 
Indicates permission to proceed when using half-
duplex (no echo) communications 

Interpret as Command (IAC) 255 Interprets the following as a command 

Interrupt Process (IP) 244 
Interrupts, suspends, aborts, or terminates the 
process 

NOP 241 No operation 

SB 250 Subnegotiation of an option 

SE 240 End of the subnegotiation 

Will 251 
Instructs the other end to begin performing or 
confirms that this end is now performing 

Won't 252 
Refuses to perform or rejects the other end 
performing 

Telnet commands are sent in a formal package called a command, as shown in Figure 6.5. 
Typically the commands contain two or three bytes: the Interpret as Command (IAC) 
instruction, the command code being sent, and any optional parameter to the command. 
The options supported by Telnet are shown in Table 6.2. 

Figure 6.5. The Telnet command structure. 

Table 6.2. Supported Telnet option codes.

Code Description 

0 Binary transmission 

1 Echo 

2 Reconnection 

3 Suppress Go Ahead (GA) 

4 Approximate message size negotiation 
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5 Status 

6 Timing mark 

7 Remote controlled transmission and echo 

8 Output line width 

9 Output page length 

10 Output carriage-return action 

11 Output horizontal tab stop setting 

12 Output horizontal tab stop action 

13 Output form feed action 

14 Output vertical tab stop setting 

15 Output vertical tab stop action 

16 Output line feed action 

17 Extended ASCII characters 

18 Logout 

19 Bytes macro 

20 Data entry terminal 

21 SUPDUP 

22 SUPDUP output 

23 Send location 

24 Terminal type 

25 End of Record 

26 TACACS user identification 

27 Output marking 

28 Terminal location number 

29 3270 regime 

30 X.3 PAD (Packet assembly and disassembly) 

31 Window size 

If you refer to the previous code listing with the options toggled on, some of the 



commands can be understood more clearly now. For example, will ECHO (which would 
be transmitted as values 255 251 1) instructs the other end to begin echoing back 
characters it receives. The command won't ECHO (the command would be 255 252 1) 
indicates that the sender will not echo back characters or wants to stop echoing. 

The use of ASCII characters and small tables of commands 
and options make it relatively easy to follow Telnet 
communications. 

TN3270

Many mainframes use EBCDIC, whereas most smaller machines rely on ASCII. This can 
cause a problem when trying to Telnet from EBCDIC-based machines to ASCII-based 
machines and vice-versa, because the codes being transferred are not accurate. To 
correct this, a Telnet application called TN3270 was developed, which provides 
translation between the two formats. 

When TN3270 is used to connect between two machines, Telnet itself establishes the 
initial connection, and then one end sets itself up for translation. If an ASCII machine is 
calling an EBCDIC machine, the translation between the two formats is conducted at 
the EBCDIC (server) end unless there is a gateway between them, in which case the 
gateway can perform the translation. 

Many TCP/IP application suites that include a Telnet program also include a TN3270 
program. For example, Figure 6.6 shows a TN3270 window from the NetManage 
ChameleonNFS suite in the process of connecting to a mainframe EBCDIC-based machine. 
The mainframe's IP address is used to initiate the connection. 

Figure 6.6. TN3270 provides conversion between ASCII and EBCDIC. 

File Transfer Protocol (FTP)

File Transfer Protocol, usually called FTP, is a utility for managing files across machines 
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without having to establish a remote session with Telnet. FTP enables you to transfer 
files back and forth, manage directories, and access electronic mail. FTP is not designed 
to enable access to another machine to execute programs, but it is the best utility for 
file transfers. 

FTP uses two TCP channels. TCP port 20 is the data channel, and port 21 is the command 
channel. FTP is different from most other TCP/IP application programs in that it does use 
two channels, enabling simultaneous transfer of FTP commands and data. It also differs 
in one other important aspect: FTP conducts all file transfers in the foreground, 
instead of the background. In other words, FTP does not use spoolers or queues, so you 
are watching the transfer process in real time. By using TCP, FTP eliminates the need to 
worry about reliability or connection management, because FTP can rely on TCP to 
perform these functions properly. 

In FTP parlance, the two channels that exist between the two machines are called the 
protocol interpreter, or PI, and the data transfer process, or DTP. The PI transfers instructions 
between the two implementations using TCP command channel 21, and the DTP transfers 
data on TCP data channel 20. This is shown in Figure 6.7. 

Figure 6.7. FTP channel connections. 

FTP is similar to Telnet in that it uses a server program that runs continuously and a 
separate program that is executed on the client. On UNIX systems, these programs are 
named ftpd and ftp, respectively (similar to telnetd and telnet). 

FTP Commands

Before looking at how you can use FTP to transfer files, you should look at the 
commands behind the protocol itself. As with Telnet's commands, these are for the 
protocol's use only and should not be used by a user (although administrators sometimes 
use the FTP commands for debugging and diagnostic purposes). 

FTP's internal protocol commands are four-character ASCII sequences terminated by a 
newline character. Some of the codes require parameters after them. One primary 
advantage to using ASCII characters for commands is that a user can observe the 
command flow and understand it easily. This helps considerably in the debugging 
process. Also, it enables a knowledgeable user to communicate directly with the FTP 
server component (ftpd). 

FTP commands used by the protocol are summarized in Table 6.3. These commands provide 
for the connection process, password checking, and the actual file transfers. These are 
not to be confused with the commands available to a user. 
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Table 6.3. FTP internal commands.

Command Description 

ABOR Abort previous command 

ACCT User account ID 

ALLO Allocate storage for forthcoming operation 

APPE Append incoming data to an existing file 

CDUP Change to parent directory 

CWD Change working directory 

DELE Delete file 

HELP Retrieve information 

LIST Transfer list of directories 

MKD Make a directory 

MODE Set transfer mode 

NLST Transfer a directory listing 

NOOP No operation 

PASS User password 

PASV Request a passive open 

PORT Port address 

PWD Display current directory 

QUIT Terminate the connection 

REIN Terminate and restart a connection 

REST Restart marker (restart transfer) 

RETR Transfer copy of file 

RMD Remove a directory 

RNFR Old pathname for rename command 

RNTO New pathname for rename command 

SITE Provides service specifics 



SMNT Mount a file system 

STAT Returns status 

STOR Accept and store data 

STOU Accept data and store under different name 

STRU File structure 

SYST Query to determine operating system 

TYPE Type of data 

USER User ID 

FTP also uses simple return codes to indicate transfer conditions. Each return code is a 
three-digit number, the first of which signifies a successful execution (the first digit is 1, 
2, or 3) or a failure (the first digit is 4 or 5). The second and third digits specify the 
return code or error condition in more detail. The FTP return codes are shown in Table 
6.4 and Table 6.5. The third-digit codes are not included here because there are many of 
them and they vary between implementations. 

Table 6.4. FTP reply code first digits.

First Digit Description 

1 Action initiated. Expect another reply before sending a new command. 

2 Action completed. Can send a new command. 

3 Command accepted but on hold due to lack of information. 

4 
Command not accepted or completed. Temporary error condition exists. 
Command can be reissued. 

5 
Command not accepted or completed. Reissuing the command will result in 
the same error (don't reissue). 

Table 6.5. FTP reply code second digits.

Second Digit Description 

0 Syntax error or illegal command 

1 Reply to request for information 



2 Reply that refers to connection management 

3 Reply for authentication command 

4 Not used 

5 Reply for status of server 

FTP enables file transfers in several formats, which are usually system-dependent. The 
majority of systems (including UNIX systems) have only two modes: text and binary. Some 
mainframe installations add support for EBCDIC, whereas many sites have a local type 
designed for fast transfers between local network machines (the local type might use 
32- or 64-bit words). 

Text transfers use ASCII characters separated by carriage-return and newline 
characters, whereas binary enables transfer of characters with no conversion or 
formatting. Binary mode is faster than text and also enables for the transfer of all 
ASCII values (necessary for nontext files). On most systems, FTP starts in text mode, 
although many system administrators now set FTP to binary mode as a default for their 
users' convenience. FTP cannot transfer file permissions, because these are not specified 
as part of the protocol. 

Before transferring files with FTP, make sure you are using the correct transfer mode. 
Transferring a binary file as ASCII results in garbage! Check with your system 
administrator if you are unsure of the mode, or watch the messages FTP returns to see 
the mode used. 

FTP Connections

FTP is usually started with the name or address of the target machine. As with Telnet, 
the name must be resolvable into an IP address for the command to succeed. The target 
machine can also be specified from the FTP command line. For example, to connect to the 
IP address 205.150.89.5, you would issue this command: 

ftp 205.150.89.5

When FTP connects to the destination, you must be able to log into the system as a valid 
user (as you do when connecting through Telnet). Some systems enable an anonymous or 
guest login for FTP file transfers (usually using your login name as a password as a 
record of your access; see the section titled "Anonymous FTP Access"), but most require 
you to have regular access to the machine. The following extract shows the login 



process as a user provides a login and password for the remote machine: 

ftp tpci_hpws4

Connected to tpci_hpws4.

220 tpci_hpws4 FTP server

Name (tpci_hpws4:tparker):

331 Password required for tparker.

Password:

230 User tparker logged in.

Remote system type is UNIX.

Using binary mode to transfer files.

On large networks where a system such as Yellow Pages (YP) or Network Information 
Services (NIS) is used, FTP logins are usually permitted on most machines. If YP or NIS is 
not employed, you must be in the valid users file to obtain FTP access. As with Telnet, 
you can log into the remote with a different user ID from your local machine login. To 
transfer files, you must have the proper permissions on the remote, if file permissions are 
provided for by the operating system. 

After logging into another machine using FTP, you are not actually on the remote 
machine. You are still logically on the client, so all instructions for file transfers and 
directory movement must be with respect to your local machine, not the remote one. 
Note that this is the opposite of Telnet (a distinction that causes considerable confusion 
among newcomers to FTP and Telnet). 

Remember that all references to files and directories are relative to the machine that 
initiated the FTP session. If you are not careful, you can accidentally overwrite 
existing files. 

The process followed by FTP when a connection is established is as follows: 

1.  Login: Verifies the user ID and password. 

2.  Define directory: Identifies the starting directory. 

3.  Define file transfer mode: Defines the type of transfer. 

4.  Start data transfer: Enables user commands. 



5.  Stop data transfer: Closes the connection. 

The steps are performed in sequence for each connection. A user has several commands 
available to control FTP; the most frequently used commands are summarized in Table 
6.6. 

Table 6.6. FTP user commands.

FTP Command Description 

ascii Switch to ASCII transfer mode 

binary Switch to binary transfer mode 

cd Change directory on the server 

close Terminate the connection 

del Delete a file on the server 

dir Display the server directory 

get Fetch a file from the server 

hash Display a pound character for each block transmitted 

help Display help 

lcd Change directory on the client 

mget Fetch several files from the server 

mput Send several files to the server 

open Connect to a server 

put Send a file to the server 

pwd Display the current server directory 

quote Supply an FTP command directly 

quit Terminate the FTP session 

Using FTP is similar to Telnet, except that all movements of files are relative to the 
client. Therefore, putting a file is moving it from the client to the server, whereas 
getting a file is the reverse. A sample FTP session follows: 



tpci_hpws1-1> ftp tpci_hpws4

Connected to tpci_hpws4.

220 tpci_hpws4 FTP server (Version 1.7.109.2 Tue Jul 28 
23:32:34 GMT 1992) ready.

Name (tpci_hpws4:tparker):

331 Password required for tparker.

Password:

230 User tparker logged in.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> pwd

257 "/u1/tparker" is current directory.

ftp> get mandelfile1.gif

remote: mandelfile1.gif local: mandelfi.gif

200 PORT command successful

150 Opening BINARY mode data connection for mandelfile1.gif

226 File transfer complete

1192834 bytes sent in 0.89 seconds

ftp> <Ctrl+d>

tpci_hpws1-2>

In this short sample, I transferred a file called mandelfile1.gif from a UNIX machine 
(the server) to the local machine (the client). You might have noticed that the filename 
was truncated automatically by the server to fit the DOS filesystem naming 
conventions. Also, note that I used binary mode (which was the system default). If the 
default had been ASCII mode, I would have just transferred over a megabyte of total 
garbage that couldn't be used for anything. 

A debugging option is available from the command line by adding -d to the command. This 
displays the command channel instructions. Instructions from the client are shown with 



an arrow as the first character, whereas instructions from the server have three digits 
in front of them. A PORT in the command line indicates the address of the data channel 
on which the client is waiting for the server's reply. If no PORT is specified, channel 20 
(the default value) is used. Unfortunately, the progress of data transfers cannot be 
followed in the debugging mode. A sample session with the debug option enabled is 
shown here: 

tpci_hpws1-1> ftp -d

ftp> open tpci_hpws4

Connected to tpci_hpws4.

220 tpci_hpws4 FTP server Name (tpci_hpws4:tparker):

---> USER tparker

331 Password required for tparker.

Password:

---> PASS qwerty5

230 User tparker logged in.

---> SYST

215 UNIX Type: L8

Remote system type is UNIX.

---> Type I

200 Type set to I.

Using binary mode to transfer files.

ftp> ls

---> PORT 47,80,10,28,4,175

200 PORT command successful.

---> TYPE A

200 Type set to A.

---> LIST



150 Opening ASCII mode data connection for /bin/ls.

total 4

-rw-r-----  1 tparker  tpci    2803  Apr 29 10:46 file1

-rw-rw-r--  1 tparker  tpci    1286  Apr 14 10:46 
file5_draft

-rwxr-----  2 tparker  tpci   15635  Mar 14 23:23 
test_comp_1

-rw-r-----  1 tparker  tpci      52  Apr 22 12:19 xyzzy

Transfer complete.

---> TYPE I

200 Type set to I.

ftp> <Ctrl+d>

tpci_hpws1-2>

You might notice in the previous code how the mode changes from binary to ASCII to 
send the directory listing, and then back to binary (the system default value). You can 
see how the two systems communicate to display the status messages that appear without 
the debugging option active. 

When FTP is used in a graphical user environment, you might be able to use a GUI-based 
tool. For example, NetManage's ChameleonNFS provides the FTP utility shown in Figure 
6.8. In this case, the NFS client on the Windows for Workgroups machine has connected 
to a UNIX server. The Local side of the window shows the Windows machine, and the 
Remote side of the window shows the UNIX box's current filesystem contents. When 
using a GUI-based utility like this one, you can use the mouse and various buttons to 
transfer files back and forth between machines. 

Figure 6.8. Many operating systems have a GUI-based FTP client. 

FTP Third-Party Transfers

FTP enables a transfer to occur through a third machine positioned between the client 
and the server. This procedure is known as a third-party transfer and is sometimes necessary 
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to obtain proper permissions to access the remote machine. Figure 6.9 shows the schematic 
of a third-party transfer, with the control connection made through a third machine. 

Figure 6.9. A third-party FTP transfer. 

When setting up a third-party connection, the client opens the control connections 
between the remote machine and the second client that handles the control channel. 
Only the control channel goes through the second client, whereas the data channel 
goes directly between the two ends. 

When a transfer request is submitted, it is transferred through the second client, which 
checks permissions and then forwards the request to the server. The data transfer can 
take place directly, because the permissions were checked on the control channel. 

Anonymous FTP Access

FTP requires a user ID and password to enable file transfer capabilities, but there is a 
more liberal method of enabling general access to a file or directory, called anonymous 
FTP. Anonymous FTP removes the requirement for a login account on the remote 
machine, usually enabling the login anonymous with a password of either guest or the 
user's actual login name. The following session shows the use of an anonymous FTP 
system: 

tpci_hpws4-1> ftp uofo.edu

Connected to uofo.edu.

220 uofo.edu FTP server (Version 1.7.109.2 Tue Jul 28 
23:32:34 GMT 1992) ready.

Name (uofo:username): anonymous

331 Guest login ok, send userID as password.

Password: tparker

230 Guest login ok, access restrictions apply.

ftp> <Ctrl+d>

tpci_hpws4-2>

file:///D|/UncleVan/Current/Teach%20Yourself%20TCP-IP%20in%2014%20Days%202nd%20Edition/06tyt09.gif


If the remote system is set to enable anonymous logins, you are prompted for a password 
and then given a warning about access limitations. If there is a file on the remote system 
you require, a get command transfers it. Anonymous FTP sites are becoming common, 
especially with the popularity of the Internet. 

FTP Servers

Most UNIX machines act as FTP servers by default. To provide FTP server facilities, they 
run the daemon ftpd when the operating system is booted. The daemon is usually 
handled by the UNIX inetd process. When you start using inetd, the inetd daemon 
watches the TCP command port (channel 21) for an arriving request for a connection, 
then starts ftpd to service that request. If you want to ensure that your UNIX or Linux 
system can handle FTP requests, make sure the ftpd daemon can be started when needed 
by inetd by checking the inetd configuration file (usually /etc/inetd.config or 
/etc/inetd.conf) for a line that looks like this: 

ftp stream  tcp  nowait  root  /usr/etc/ftpd   ftpd -l

If this line doesn't exist, you should add it. With most UNIX systems this line is already 
in the inetd configuration file, although it might be commented out, in which case you 
should remove the comment symbol. 

Windows, Windows for Workgroups, and Windows 95 all lack an FTP server program as 
part of their distribution software (although Windows 95 does have an FTP client), so 
you have to add a commercial package. Many commercial TCP/IP suites include an FTP 
server process. Figure 6.10 shows the NetManage ChameleonNFS program group, which 
includes an FTP server program you can use as an example for Windows for Workgroups 
and Windows 3.x machines. 

Figure 6.10. The NetManage FTP Server dialog handles the FTP server process. 

To start the NetManage FTP Server software, double-click the FTP server icon in the 
NetManage program group. A dialog, shown in Figure 6.10, appears. The FTP server 
process is now active, and anyone on another machine on your local area network can 
now connect to your machine, assuming they have access. 

Access to your FTP service is controlled through the user lists maintained by the FTP 
Server package. Selecting the Users menu option from the NetManage FTP Server dialog 
opens the Users dialog, shown in Figure 6.11. This lets you add user names to your system. 
If another user on a different machine tries to connect to your FTP server software, the 
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server verifies that their login name and password match the name and password you 
enter in this dialog. This lets you set up a list of users who can transfer files to and 
from your system, as long as the FTP server is running. 

Figure 6.11. Access to your machine is controlled through the FTP Server Users 
dialog. 

If you are running an FTP server process, it is often a good idea to create a directory 
just for FTP. Many users prefer to create a directory called public, which is where all 
files to be transferred in and out of the local system are placed. This lets you prevent 
accidental deletion or transfer of files in other directories on your system, as well as 
providing you with the opportunity to filter incoming material for suitability, viruses, 
and so on. If you use a transfer directory, check it regularly and make sure all users 
who have access to your system can work only in that directory. 

If you want to provide an anonymous or guest account for users on your LAN or any 
other network that can connect to your machine, you should set up an account with 
either no password or a simple password like guest. It is very important to restrict the 
areas a guest or anonymous login can use. 

As mentioned earlier, Windows 95 is supplied with client FTP software but not an FTP 
server. You can use other aspects of Windows 95 as a file transfer system, such as file 
and print sharing over any existing network, but these do not use FTP. If you want to 
set up an FTP server on your Windows 95 machine, you have to install third-party 
commercial software for this purpose. 

A popular Windows 95 FTP server package called FTP Serv-U was written by Rob Beckers 
and is provided as shareware. An executable file called Serv-U starts the server. To 
control access to your Windows 95 system, you can set up logins using the Serv-U Users 
menu option. This displays a screen that lets you add logins and passwords, as well as 
the directories and drives the user has access to. Figure 6.12 shows the Edit User/Group 
dialog with a user being added. When a user from another system logs into your 
Windows 95 machine, they are asked for a login and password. 

Figure 6.12. Set up all users of your FTP server with the Edit User/Group dialog. 

Trivial File Transfer Protocol (TFTP)

The Trivial File Transfer Protocol (TFTP) is one of the simplest file transfer protocols 
in use. It differs from FTP in two primary ways: it does not log onto the remote machine, 
and it uses the User Datagram Protocol (UDP) connectionless transport protocol 
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instead of TCP. By using UDP, TFTP does not monitor the progress of the file transfer, 
although it does have to employ more complex algorithms to ensure proper data 
integrity. By avoiding logging onto the remote, user access and file permission problems 
are avoided. TFTP uses the TCP port identifier number 69, even though TCP is not 
involved in the protocol. 

TFTP has few advantages over FTP. It is not usually used for file transfers between 
machines where FTP could be used instead, although TFTP is useful when a diskless 
terminal or workstation is involved. Typically, TFTP is used to load applications and 
fonts into these machines, as well as for bootstrapping. TFTP is necessary in these cases 
because the diskless machines cannot execute FTP until they are fully loaded with an 
operating system. TFTP's small executable size and memory requirements make it ideal 
for inclusion in a bootstrap, where the system requires only TFTP, UDP, and a network 
driver, all of which can be provided in a small EPROM. 

TFTP handles access and file permissions by imposing restraints of its own. On most UNIX 
systems, for example, a file can be transferred only if it is accessible to all users on the 
remote (both read and write permissions are set). Because of the lax access regulations, 
most system administrators impose more control over TFTP (or ban its use altogether); 
otherwise, it is quite easy for a knowledgeable user to access or transfer files that 
could constitute a security violation. 

TFTP transfers can fail for many reasons, because practically any kind of error 
encountered during a transfer operation causes a complete failure. TFTP does support 
some basic error messages, but it cannot handle simple errors such as insufficient 
resources for a file transfer or even a failure to locate a requested file. 

TFTP Commands

The important instructions in TFTP's command set are shown in Table 6.7. The TFTP 
command set is similar to FTP's, but it differs in several important aspects because of the 
connectionless aspect of the protocol. Most noticeable is the connect command, which 
simply determines the remote's address instead of initiating a connection. 

Table 6.7. TFTP's command set.

TFTP Command Description 

binary Use binary mode for transfers 

connect Determine the remote's address 



get Retrieve a file from the remote 

put Transfer a file to the remote 

trace Display protocol codes 

verbose Display all information 

TFTP enables both text and binary transfers, as does FTP. As with both Telnet and FTP, 
TFTP uses a server process (tftpd on a UNIX system) and an executable, usually called 
tftp. A sample TFTP session on a UNIX host is shown here, with full trace options and 
binary transfers turned on: 

tpci_hpws1-1> tftp

tftp> connect tpci_hpws4

tftp> trace

Packet tracing on.

tftp> binary

Binary mode on.

tftp> verbose

Verbose mode on.

tftp> status

Connected to tpci_hpws4.

Mode: octet Verbose: on Tracing: on

Rexmt-interval: 5 seconds, Max-timeout: 25 seconds

tftp> get /usr/rmaclean/docs/draft1

getting from tpci_hpws4:/usr/rmaclean/docs/draft1 to 
/tmp/draft1 [octet]

sent RRQ <file=/usr/rmaclean/docs/draft1, mode=octet>

received DATA <block1, 512 bytes>

send ACK <block=1>



received DATA <block2, 512 bytes>

send ACK <block=3>

received DATA <block4, 128 bytes>

send ACK <block=3>

Received 1152 bytes in 0.2 second 46080 bits/s]

tftp> quit

tpci_hpws1-2>

In the session above, you can see that the trace and verbose commands turn on the 
echoing of the instructions flowing between the two machines during a file transfer. 
Every time a block of data is sent after the get command is issued (the send ACK 
instruction shown on the session above), a received instruction is returned to 
acknowledge the ACK. 

TFTP is available on all UNIX systems as well as in TCP/IP suites for other operating 
systems. Figure 6.13 shows the TFTP utility from ChameleonNFS, which lets you enter 
the remote host name, the remote and local filenames, and the type of transfer you 
want. The file transfer is then performed in the background using UDP. 

Figure 6.13. Using TFTP to transfer a file. 

TFTP Packets

TFTP uses UDP as a transport protocol, so TFTP can use the UDP header to encapsulate 
TFTP protocol information. TFTP uses the UDP source and destination port fields to set 
the two ends of the connection. It accomplishes this by the use of TFTP Transfer Identifiers, 
or TIDs, which are created by TFTP and passed to UDP, which then places them in the 
headers. 

As with Telnet and FTP, TFTP uses port binding, where the sending machine selects a 
TID, and the remote is set to port number 69 (TFTP's port number). The remote machine 
responds with an acknowledgment of a connection request, a source port of 69, and the 
destination TID sent in the request. 

TFTP uses five types of Protocol Data Units, which are referred to as packets in the 
TFTP lexicon. These packets are listed in Table 6.8. Their layout is shown in Figure 6.14. 
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Error messages supported by TFTP are shown in Table 6.9. 

Figure 6.14. TFTP packet layouts. 

Table 6.8. TFTP Protocol Data Unit codes.

Code OpCode Description 

ACK 4 Acknowledgment 

DATA 3 Send Data 

Error 5 Error 

RRQ 1 Read request 

WRQ 2 Write request 

Table 6.9. TFTP error messages and codes.

Code Description 

0 Not defined 

1 File not found 

2 Permissions prevent access 

3 Disk full or allocation limit exceeded 

4 Illegal TFTP operation requested 

5 Unknown transfer number 

The layouts for both RRQ and WRQ packets have a Mode field, which indicates the type 
of transfer. There are three modes currently available to TFTP: 

●     NetASCII: Standard ASCII codes. 

●     Byte: 8-bit bytes and binary information. 

●     Mail: Indicates that the destination is a user, not a file (information is 
transferred as NetASCII). 
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The last block in all packets contains between 0 and 511 bytes of data, labeled 0 in 
Figure 6.14. This pads out the block of data to 512 bytes. 

The communications process used by TFTP begins with the client sending an RRQ or WRQ 
request to the server through UDP. As part of the request, a transaction number, the 
filename, and a code to identify the transmission mode to be used are specified. The 
transaction number is used to identify future transactions in the sequence. 

Because there is no connection between the two, the client sets a timer and waits for a 
reply from the server. If one doesn't arrive before the timer expires, another request is 
sent. After an ACK is received, a DATA packet is transmitted, for which another ACK or 
an ERROR is received. If there are several packets to be transferred, they are 
constructed so they have a length of 512 bytes and an incrementing sequence number. 
The process terminates when a DATA packet with a length of less than 512 bytes is 
received by the server. For each packet sent, TFTP waits for an acknowledgment before 
sending the next, a system known as a flip-flop protocol. 

Simple Mail Transfer Protocol (SMTP)

The Simple Mail Transfer Protocol (SMTP) is the defined Internet method for 
transferring electronic mail. SMTP is similar to FTP in many ways, including the same 
simplicity of operation. SMTP uses TCP port number 25. 

Most UNIX systems use programs called sendmail or mmdf to implement SMTP (as well as 
several other mail protocols). The sendmail program, for example, acts as both a client 
and a server, usually running in the background as a daemon. Users do not interact 
with sendmail directly but use a front-end mail program such as mail, mailx, or Mail. 
These mail system interfaces pass the message to sendmail for forwarding. 

SMTP uses spools or queues. When a message is sent to SMTP, it places it in a queue. SMTP 
attempts to forward the message from the queue whenever it connects to remote 
machines. If it cannot forward the message within a specified time limit, the message is 
returned to the sender or removed. 

SMTP Commands

SMTP data transmissions use a simple format. All the message text is transferred as 7-bit 
ASCII characters. The end of the message is indicated by a single period on a line by 



itself. If for some reason a line in the message begins with a period, a second one is added 
by the protocol to avoid confusion with the end-of-message indicator. 

SMTP has a simple protocol command set, listed in Table 6.10. Using these protocol 
elements, mail is transferred with a minimum of effort. 

Table 6.10. The SMTP protocol command set.

Command Description 

DATA Message text 

EXPN Expansion of a distribution list 

HELO Use in connection establishment to exchange identifiers 

HELP Request for help 

MAIL The sender's address 

NOOP No operation 

RCPT The message destination address (more than one can be provided) 

RSET Terminate the current transaction 

SAML Send a message to the user's terminal and send mail 

SEND Send a message to the user's terminal 

SOML Either send a message to the user's terminal or send mail 

TURN Change the sending direction (reverse sending and receiving roles) 

VRFY Verify the user name 

When a connection is established, the two SMTP systems exchange authentication codes. 
Following this, one system sends a MAIL command to the other to identify the sender 
and provide information about the message. The receiving SMTP returns an 
acknowledgment, after which a RCPT is sent to identify the recipient. If more than one 
recipient at the receiver location is identified, several RCPT messages are sent, but the 
message itself is transmitted only once. After each RCPT there is an acknowledgment. A 
DATA command is followed by the message lines, until a single period on a line by itself 
indicates the end of the message. The connection is closed with a QUIT command. 

The sender and recipient address fields use standard Internet formats, involving the 
user name and domain name (such as tparker@tpci.com). The domain can be replaced by 
other information if a direct connection is established, or if there is a forwarding 
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machine in the path. SMTP uses the Domain Name System (DNS) for all addresses. 

The Berkeley Utilities

The University of California at Berkeley was instrumental in the development of 
TCP/IP and contributed many utility programs to the application tool set. These are 
usually known by the term Berkeley r-Utilities. They are called r-utilities because they 
all start with the letter r (for remote). Most of the utilities are UNIX-specific, 
although they have since all been ported to other operating systems. 

The hosts.equiv and .rhosts Files

To enable machines to communicate correctly over networks, access rights for machines 
and users must be set. Usually, when logging into another machine, a user must supply a 
user ID and a password. When you log into many machines, retyping this information can 
be tedious and time-consuming. It can also be a security problem, because it is easy to 
write a program that monitors network connections for this information. A way to 
enable fast access without actually logging in and preventing interception of 
passwords is clearly useful in some cases. 

The system administrator can decide that all login names used on other machines whose 
names are in the file hosts.equiv are allowed access on the local machine. This enables a 
protocol that queries a machine for access to check the hosts.equiv file for the 
requesting machine's name, and if it is found, to grant access to the user on the remote 
machine. The user has the same access rights as on his or her home machine. 

If the protocol doesn't find an entry in the hosts.equiv file, it can check another file 
maintained in a user's home directory, called .rhosts. A user can control who has access 
to their login name with the file .rhosts in their home directory, enabling other users 
to log in as if they were that user. The .rhosts file must be owned by the user (or root) 
and not allow write access to all users (on a UNIX system, the other permission cannot 
be write). An .rhosts file consists of a line for each user to be allowed into the home 
directory. The line consists of a machine name and a login name. A sample .rhosts file is 
shown here: 

tpci_hpws1 rmaclean

tpci_hpws1 bsmallwood



tpci_hpws3 ychow

tpci_hpws3 bsmallwood

tpci_hpws4 glessard

tpci_hpws4 bsmallwood

tpci_sunws1 chatton

merlin tparker

merlin ahoyt

merlin lrainsford

This file allows user bsmallwood to log in from three different machines. 

rlogin

The rlogin command (for remote login) enables a user to log into another machine. It is 
very similar in functionality to Telnet, although the protocol is much simpler. There is 
a background program running on the server called rlogind, and the program rlogin 
resides on the client. 

The rlogin protocol begins a session by sending three character strings, separated by 0s. 
The first string is the user's login ID (on the client), the second string is the login name 
for the server (usually but not always the same as the login name on the client), and 
the third string is the login name and transmission rate of the user's terminal (such as 
wyse60/19200). When received on the server, the strings can be converted to 
environment variables (such as UNIX's TERM terminal variable). You cannot log into 
the remote machine with a different user ID, because the system does not prompt for the 
login name. It does prompt for a password, however. 

After the login process is completed, rlogin doesn't use any protocol. Every character 
you type on the client machine is sent to the server, whereas every server-generated 
character is displayed on your console. The only exit to your local machine is by 
closing the connection by using Ctrl+D or entering the escape character on a line by 
itself. By default, the escape character is a tilde (~). 

Some versions of rlogin enable a shell escape, a temporary suspension of the rlogin 
session and a return to the operating system, by using ~!. 



rsh

The rsh utility (remote shell) lets you execute commands on a remote machine. As with 
most Berkeley utilities, a background process called rshd is involved. Executing a 
command on a remote machine is a matter of adding rsh and the machine name to the 
front of the command line, such as rsh tpci_hpws3 who or rsh tpci_sunws1 tar xvf 
/dev/rct0 (using UNIX examples). The rsh utility depends on the presence of either 
hosts.equiv or .rhosts to enable login; otherwise, access is not granted. 

The rsh utility is not a shell in the sense that it does not interpret commands like the 
UNIX C shell or Bourne shell. Instead, a command entered is sent to the server's 
standard input and output, executing the command as a local process through the TCP 
connection. The primary advantage of this is that a shell script that executes on your 
local machine can be submitted to the remote machine with no modification, where it 
runs just as if it were local (except using the remote's file system). Unfortunately, any 
return codes generated by the remote system are not sent back to your local machine. 
Also, most screen-oriented applications do not function properly, because they have no 
terminal output to write to. 

rcp

The Berkeley rcp (remote copy) command is similar to the UNIX cp command, except that 
it works across the network. The command syntax and option lists for rcp are the same as 
cp, although a machine name is usually specified as part of the filename by the addition 
of the machine name followed by a colon (see the following examples). Even recursive 
copying of directories is supported (a useful and attractive feature of rcp that isn't 
available under FTP or TFTP). The rcp program acts as both server and client, initiated 
when a request arrives. 

rcp tpci_hpws4:/user/tparker/doc/draft1 .

rcp file2 merlin:/u1/bsmallwood/temp/file2

rcp -r merlin:/u2/tparker/tcp_book tpci_server/tcp_book



rcp merlin:/u1/ychow/iso9000_doc 
tpci_server:/u1/iso/doc1/iso_doc_from_ychow

rcp file4 tparker@tpci.com:new_info

As the examples indicate, the filenames at both the local and remote machines are 
specified, with standard UNIX conventions supported. The third example shows a file 
being transferred from one machine to another, neither of which is the machine from 
which the command is initiated. The last example shows the use of a full DNS-style name 
for the destination address. 

The rcp utility is a faster method of transferring files than FTP, although rcp requires 
access permission through an .rhosts file (not hosts.equiv). Without an entry in this file, 
access is refused and FTP or TFTP must be used. 

rwho

The rwho (remote who) command uses the rwhod daemon to display a list of users on the 
network. It shows all network users, compiled from a regularly sent packet of 
information from all running rwhod programs. The frequency of this packet broadcast is 
system-dependent but is usually in the order of every one to three minutes. When an 
rwhod program receives a broadcast from another machine, it places it in a system file 
for future use. (The file on a UNIX system is called /usr/spool/rwho.) 

When a machine has not sent a broadcast message within a time limit (usually eleven 
minutes), it is assumed that the machine has disconnected from the network, and all 
users listed as active on that machine in the system file are ignored. The rwhod program 
drops a user ID from its broadcast if nothing has been entered at the user's terminal in 
the last hour. 

The output from an rwho request is shown in the following example. For each user, it 
shows their login name, their machine and terminal name, and the time and date of their 
login. 

bsmallwood merlin:tty2p      Feb 29 09:01

etreijs    tpci_hpws2:tty01  Feb 29 12:12



rmaclean   goofus:tty02      Feb 28 23:52

tparker    merlin:tty01      Feb 29 11:43

ychow      prudie:tty2a      Feb 28 11:37

The rcp program has one major problem on large networks: the continuous sending of 
update packets by each machine creates a considerable amount of network traffic. For 
this reason, some implementations directly request the user names only when an rwho 
request is received. 

ruptime

The ruptime utility displays a list of all machines on the network, their status, the 
number of active users, current load, and elapsed time since the system was booted. The 
program uses the same information as the rwho command. 

A sample output from a ruptime command follows: 

merlin     up    3:15,12 users, load 0.90, 0.50, 0.09

prudie     down  9:12

tpci_hpws1 up   11:05, 3 users, load 0.10, 0.10, 0.00

tpci_hpws2 up   23:59, 5 users, load 0.30, 0.25, 0.08

tpci_hpws3 down  6:45

tpci_hpws4 up    9:05, 1 user,  load 0.12, 0.05, 0.01

rexec

The rexec (remote execution) program is a holdover from earlier versions of the UNIX 
operating system. It was designed to enable remote execution of a command through a 
server process called rexecd. The utility uses the dedicated TCP port number 512. 



The protocol used by rexec is very similar to rsh, except that an encrypted password is 
sent with the request and there is a full login process. The rexec utility is seldom used 
because rsh is a faster and more convenient method for executing a command remotely. 

Summary

Today I looked at the primary application protocols that use TCP/IP, as well as the 
Berkeley utilities. Now that you can see how protocols work on top of the TCP and IP 
protocols, the layered structure of TCP/IP becomes more pronounced. Future days' texts 
build on this information. 

Q&A

What is the purpose of Telnet and FTP? 

Telnet provides a remote login capability, whereas FTP enables you to transfer files 
across the network. 

What channels (port numbers) are used by Telnet, FTP, and SMTP? 

Telnet uses port number 23. FTP uses port number 21 for the control information and 
port number 20 for data. SMTP uses port number 25. 

When you issue a get command in FTP, is it moving a file from the local to remote, 
or vice versa? 

FTP commands are relative to the remote, so a get command moves a file from the local 
to the remote. 

How does TFTP differ from FTP? 

TFTP does not require logging in. It sends a request over UDP. With FTP, you must log 
into the destination either directly or through a third-party device. 

Does rlogin differ from telnet? 

The rlogin program was developed earlier and for most users has no difference. There 



are some version dependencies with some releases of rlogin, reflecting its earlier (and 
less full-featured) origins. 

Quiz

1.  Explain what a network virtual terminal is. 

2.  Draw diagrams showing two- and three-party FTP sessions, indicating the port 
numbers used by each machine. 

3.  Why would you want to enable anonymous FTP access? Are there any reasons for 
disallowing it? 

4.  TFTP enables files to be transferred without logging in. What problems can this 
cause? 

5.  What are the Berkeley Utilities? 

Workshop

If you have access to a Telnet or FTP session, try logging into a remote machine and 
transferring files back and forth. Try to recognize that Telnet does everything 
relative to the local machine, whereas FTP is relative to the remote. 
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TCP/IP Configuration and Administration 

Basics

Although TCP/IP works transparently for the user, occasionally communications seem to 
be slow and TCP/IP is suspected as the cause. Most users are impatient and expect things to 
happen right away, so delays for any reason lead to frustration. Rather than sit and 
wait, most users like to be able to verify that a connection to a remote machine is active 
and a delay is caused by network traffic instead of a system failure. At the least, most 
users would like to understand why a session is progressing slowly. 



TCP/IP has several utility programs that provide status information and performance 
statistics. Also available are several debugging programs and options to enable a 
developer or knowledgeable user to trace a problem. This chapter examines the basic set 
of these tools. Although TCP/IP is a standard, there are many different implementations 
of the protocol family. Most versions have the basic toolset discussed today, although 
some might alter names and output to their own liking. 

All network addresses and machine names in this chapter 
are chosen at random and do not represent any particular 
network. Because the network addresses used might correspond 
to a real network, you should not use them in any 
experimentation, or you might incur the wrath of a system 
administrator! 

Not all the commands shown in this chapter are available to regular users (as opposed to 
system administrators) on all systems, although some system administrators do enable 
some access to the utilities for checking connection and TCP/IP status. The commands are 
presented here to show the debugging and diagnostic capabilities available to the TCP/IP 
user and administrator. The commands are not covered in exhaustive detail but are 
intended to complete the TCP/IP picture for you. Many of these programs and utilities are 
seen again later in this book when I set up a sample TCP/IP network. 

Configuration Files

Several files are involved in the complete specification of network addresses and 
configuration for TCP/IP. For illustrative purposes, a UNIX system is used as the standard 
here, although a few other operating systems are mentioned as appropriate. Other 
operating systems use different filenames, but the purpose of the files is usually the same. 
You might have to check with your operating system documentation to identify the files 
used for each purpose. 

UNIX allows comments on every line of these configuration files, as long as they are 
prefaced by a pound sign (#). If you see this character in your own system's configuration 
files, you should note that it is not part of an entry. With many operating systems, the 
default configuration files have many entries, most of which are commented out until 
the system administrator removes the comments. 

You might not be able to examine the files or run the utilities mentioned in this chapter 



because of security restrictions. If you edit the configuration files, make sure you do not 
make any unintentional changes! Make backups of all the files before you make any 
changes to your systems. 

Symbolic Machine Names: /etc/hosts

Whenever a symbolic name is used as a target address by an application, there must be 
some method to resolve that name into a network address. An ASCII file is commonly used 
with the symbolic names matched to network addresses. This does not apply when the 
Yellow Pages (YP), Network Information Services (NIS), or the Domain Name Server (DNS) 
is used; they use their own configuration files. 

On UNIX systems, the file /etc/hosts is used to hold the network addresses, as well as one 
special connection called the loopback (which is examined later in this chapter in the 
section titled "The Loopback Driver"). The loopback connection address is usually listed 
as the machine name loopback or localhost. 

The file /etc/hosts consists of the network address in one column separated from the 
symbolic name in another. The network addresses can be specified in decimal, octal, or 
hexadecimal format (although decimal is the most common). More than one symbolic name 
can be specified on a line by separating the names with either space characters or tabs. 
The /etc/hosts file can be as long as necessary to contain all the symbolic names used on 
the local machine; they do not need to be presented in any order. A sample UNIX 
/etc/hosts file is as follows: 

# network host addresses

127.0.0.1            localhost local tpci_server

157.40.40.1          tpci_sco1

157.40.40.2          tpci_sco2

157.40.40.3          tpci_hpws1

157.40.40.0          tpci_server tpci_main tpci

47.80.157.36         bnr.ca BNR bnr

191.13.123.4         kitty_cat

205.150.89.1         roy_maclean big_roy

210.24.47.128        bobs_machine



As you can see, the file is made up of two columns. The first column gives the IP address of 
a machine, and the second (separated by one or more whitespace characters) gives the 
machine's name. If several names can be used to identify the remote machine, they are 
listed on the same line, separated by whitespace. For example, the remote machine with IP 
address 205.150.89.1 can be addressed as either roy_maclean or big_roy. Whenever either 
of those names is used in a command (such as an FTP or Telnet application), this file is used 
to match to the proper IP address. 

A system or network administrator can update the /etc/hosts file at any time, and 
changes are effective immediately (so the machine doesn't have to be rebooted to effect 
the changes). Whenever a symbolic name is specified by a user or an application, the 
/etc/hosts file is always searched first for a matching name, and the proper address is read 
from the same line. 

Most TCP/IP implementations on other platforms have a similar type of file to resolve IP 
addresses from symbolic names. NetManage ChameleonNFS running on a Windows 3.x 
machine, for example, uses a Host Table to match names and IP addresses. The Host Table, 
shown in Figure 7.1, is a graphical front-end to a file equivalent to /etc/hosts on a UNIX 
machine. 

Figure 7.1. ChameleonNFS uses a Host Table to match symbolic names and IP 
addresses. 

Network Names: /etc/networks

Networks can be addressed by a symbolic name, just as machines are. To resolve the 
network names, another file is used that contains the corresponding network address. 
Typically, this file isn't accessed often, because few users want to address an entire 
network within their application. The network name resolution file's most common use is 
to specify the local network's name. 

UNIX systems usually use the file /etc/networks to specify symbolic network names. The 
format of the file provides a network symbolic name, its network address, and any alias 
that might be used, in much the same format as the /etc/hosts table is used for specific 
machines. A sample /etc/networks file is shown here: 

# local network names

tpci       146.1          tpci_network  tpci_local

bnr        47.80          BNR bnr.ca
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tmn        123.2.21

unique     89.123.23      UNIQUE

sco        132.147        SCO

loopback   127            localhost

The /etc/networks file layout is a little different from /etc/hosts in that the usual 
network name is given in the first column, followed by the IP network address, then any 
aliases. 

The last entry in this example file gives the loopback name. The first entry specifies the 
local machine name, its network address, and any name variants. Using this file, an 
application that wanted to reach the network called UNIQUE could use that name and 
let the operating system resolve it to the IP network address 89.123.23. 

Many implementations of TCP/IP on other platforms don't bother with a network name 
resolution file like this. Part of the reason is that the /etc/networks file has little use 
on a UNIX platform, and many single-user operating systems don't require the type of 
versatility a multiuser operating system like UNIX must supply to an entire network. 

Network Protocols: /etc/protocols

Protocol numbers are used to identify the transport protocol to the receiving machine to 
enable proper decoding of the information within the datagram. With TCP/IP, the 
protocol number is embedded in the Internet Protocol header. A configuration file is 
usually used to identify all the transport protocols available on the system and their 
respective protocol numbers. 

UNIX systems use the /etc/protocols file for this purpose. Usually, this file is not modified 
by the administrator but is maintained by the system and updated automatically as part 
of the installation procedure when new TCP/IP software or services are added. The 
/etc/protocols file contains the protocol name, its number, and any alias that might be 
used for that protocol. A sample /etc/protocols file is shown here: 

#

# Internet (IP) protocols

#

ip      0       IP      # internet protocol, pseudo protocol 



number

icmp    1       ICMP    # internet control message protocol

igmp    2       IGMP    # internet group management protocol

ggp     3       GGP     # gateway-gateway protocol

tcp     6       TCP     # transmission control protocol

egp     8       EGP     # Exterior-Gateway Protocol

pup     12      PUP     # PARC universal packet protocol

udp     17      UDP     # user datagram protocol

hello   63      HELLO   # HELLO Routing Protocol

ospf    89      OSPF    # Open Shortest Path First Routing 
Protocol

In this /etc/protocols file, the IP protocol is assigned protocol 0, and TCP is protocol 6. 
The values in this table should not be changed from their default values except when 
special network conditions mandate a change. If new TCP/IP services are added to the 
UNIX system this file resides on, new entries are made to this file by the application 
installation routine. 

There are usually no equivalents of the /etc/protocols file on other operating systems 
because they assume that the standard transport number is used for each protocol. 

Network Services: /etc/services

The final common configuration file used on most UNIX systems identifies the existing 
network services. As with the /etc/protocols file, this file is not usually modified by an 
administrator but is maintained by software as it is installed or configured. 

The UNIX network services file is /etc/services. The file is in ASCII format consisting of 
the service name, a port number, and the protocol type. The port number and protocol 
type are separated by a slash. The port numbers for TCP/IP usually follow the 
conventions mentioned in the previous chapters. Any optional service alias names follow 
after the port numbers. A short extract from a sample /etc/services file (the file is 
usually quite lengthy) is shown here: 



# network services

echo     7/tcp

echo     7/udp

discard  9/tcp   sink  null

discard  9/udp   sink  null

ftp      21/tcp

telnet   23/tcp

smtp     25/tcp   mail mailx

tftp     69/udp

# specific services

login    513/tcp

who      513/udp   whod

Setting the Host Name

TCP/IP requires that each machine on the network have an IP address. Usually, each 
machine also has a unique symbolic name; otherwise, the IP address must be used for all 
connections to that machine. Most operating systems have a simple program that 
identifies the name of the local machine. UNIX systems have the utility hostname for this 
purpose, as well as the uname program, which can give the node name with the command 
uname -n. The uname utility is usually supported in System V and compatible operating 
systems only. 

The host name is sometimes saved in a separate file that is read when the operating system 
starts up, or it can be read from one of the configuration files mentioned previously. The 
hostname is used by most protocols on the system and by many TCP/IP applications, so it is 
important for proper system operation. The host name can sometimes be changed by editing 
the system file that contains the name and then rebooting the machine, although many 
operating systems provide a utility program to ensure that this process is performed 
correctly. 

On many UNIX systems, the hostname and uname commands echo back the local machine 



name, as the following sample session shows: 

$ hostname

tpci_sco4.tpci.com

$ uname -n

tpci_sco4

On the SCO UNIX system used in this example, the hostname command returns the fully 
qualified domain name, whereas the uname command provides the local machine name 
only. On a Hewlett-Packard workstation running HP-UX, both commands return only 
the local machine name. The exact behavior of the hostname and uname commands is 
therefore quite dependent on the implementation. 

On a Linux system, for example, the hostname command can be used to not only show the 
current host name setting but also to change it when used with the -S (for set) option. 
For example, the command 

hostname -S willow.tree.com

changes the local fully qualified domain name to willow.tree.com. Not all versions of 
Linux support the -S option of the hostname command. 

Most TCP/IP suites for other operating systems use a simpler method of setting the host 
name. For example, on a Windows 3.x machine the NetManage ChameleonNFS package uses 
the dialog shown in Figure 7.2 to quickly set the host name. 

Figure 7.2. ChameleonNFS uses this dialog to set the host name. 

Windows NT has TCP/IP services built into the basic distribution. On a Windows NT system, 
the host name is specified through the Network dialog opened from the Control Panel, as 
shown in Figure 7.3. Both the Windows NT and Windows 3.x systems enable a change in the 
host name to be made effective immediately, although a system reboot is recommended to 
clear all configuration information held in memory. 

Figure 7.3. Setting the host name through the Windows NT Network Control Panel. 

A potential problem can occur when the local machine is multihomed, or based in several 
networks with a different name and IP address for each network. The single name in the 
configuration file in such an installation might not provide enough information to 
permit proper routing over all the connected networks. This problem is seldom 
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encountered, but it does require the system administrator to set the hostname for each 
network carefully. 

Aside from the simple machine name query shown, the hostname system is a full protocol 
that enables access to the Network Information Center (NIC) tables to verify addresses 
and obtain information about the network, gateways, and hosts. It uses TCP port number 
101 to connect to the NIC. This type of access is usually restricted to the network 
administrator. 

The Loopback Driver

The loopback driver is probably the most fundamental and often-used diagnostic available 
to an administrator. A loopback driver acts as a virtual circuit, enabling outgoing 
information to be immediately rerouted back to an input. This enables testing of the 
machine's circuits by eliminating any external influences, such as the network itself, 
gateways, or remote machines. By convention, each machine uses the IP address 127.0.0.1 
for the loopback driver (also called the localhost IP address). 

Every system should have a loopback driver in place whether the machine is on a network 
or not. This is because some applications insist on having an IP address they can access to 
function properly. Many license servers on a UNIX machine have this requirement, for 
example. Although the need for a loopback driver isn't important for non-networked 
Windows and similar operating system machines, a loopback driver is always installed 
with a TCP/IP suite. 

By using a loopback driver, an administrator can be sure 
that the local machine is working properly and that any 
failures are from further out. Also, some applications insist on 
having a loopback driver IP address in order to function 
properly. 

Loopback drivers are usually embedded as part of the operating system kernel, or 
sometimes as an add-on utility program. Most multiuser systems employ an embedded 
loopback driver. UNIX is a good example: within the kernel is a device driver specifically 
designed to act as a loopback driver. The loopback driver is almost always added 
automatically when the operating system is installed, but a few UNIX-based operating 
systems, including several versions of Linux, don't perform this function, and the 
loopback driver must be added manually by the system administrator. As previously 



mentioned, several configuration files on the system contain the address of the 
loopback's connection, such as /etc/hosts. 

Using the loopback driver to reroute the output stream, the network interface card 
(usually an Ethernet card) is bypassed. The loopback driver is useful for testing TCP/IP 
software installations, because it immediately shows any problems with the local 
configuration. This can be done before the machine is physically connected to the 
network or even before the networking hardware and software are installed. For 
example, you can use the loopback driver to test your TCP/IP configuration before it is 
connected to a network by using the ping command with the localhost name or IP 
address, as the following example shows: 

# ping -c5 localhost

PING localhost (127.0.0.1): 56 data bytes

64 bytes from localhost (127.0.0.1): icmp_seq=0 ttl=64 
time=10 ms

64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 
time=0 ms

64 bytes from localhost (127.0.0.1): icmp_seq=2 ttl=64 
time=0 ms

64 bytes from localhost (127.0.0.1): icmp_seq=3 ttl=64 
time=0 ms

64 bytes from localhost (127.0.0.1): icmp_seq=4 ttl=64 
time=0 ms

--- localhost ping statistics ---

5 packets transmitted, 5 packets received, 0% packet loss

round-trip min/avg/max = 0/2/10 ms

# ping -c5 127.0.0.1

PING 127.0.0.1 (127.0.0.1): 56 data bytes

64 bytes from localhost (127.0.0.1): icmp_seq=0 ttl=64 
time=0 ms

64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 
time=0 ms

64 bytes from localhost (127.0.0.1): icmp_seq=2 ttl=64 



time=0 ms

64 bytes from localhost (127.0.0.1): icmp_seq=3 ttl=64 
time=0 ms

64 bytes from localhost (127.0.0.1): icmp_seq=4 ttl=64 
time=0 ms

--- 127.0.0.1 ping statistics ---

5 packets transmitted, 5 packets received, 0% packet loss

round-trip min/avg/max = 0/0/0 ms

In the preceding example I used the ping command with the -c option to specify five pings, 
first with the localhost name (which /etc/hosts resolves to the IP address 127.0.0.1) and 
then with the IP address itself. If either command had failed, it would indicate a problem 
with either the /etc/hosts file (if the name localhost could not be resolved) or with the 
TCP/IP installation (if both commands failed). 

Managing ARP

The arp program manages entries in the system's Address Resolution Protocol (ARP) 
tables. You may recall that ARP provides the link between the IP address and the 
underlying physical address. For more information, see Day 2, "TCP/IP and the Internet." 

Using arp (or its equivalent in other operating systems), the administrator can create, 
modify, or delete entries in the ARP table. Typically, this has to be performed whenever a 
machine's network address changes (either because of a change in the network hardware 
or because of a physical move). 

The arp program differs considerably between implementations and is seldom used by 
users, so examples of its use are left to the operating system's configuration and 
administration documentation. 

Using ifconfig

The ifconfig program, or one like it, enables an administrator to activate and deactivate 
network interfaces, as well as to configure them. Access to the ifconfig program is 
generally restricted to a superuser or network administrator. Changes to the 



configuration can usually be made only before the system is fully operational (such as in 
single-user mode on a UNIX system). When issued, ifconfig essentially instructs the 
network layer of the kernel to work with the specified network interface by assigning 
an IP address, then issuing a command to make the interface active on the system. Only 
when the interface is active can the operating system kernel send and receive data 
through the interface. 

The ifconfig program enables a network administrator to perform several useful 
functions on most operating systems: 

Activate or deactivate an interface 

Activate or deactivate ARP on an interface 

Activate or deactivate debugging mode on an interface 

Assign a broadcast address 

Assign a subnetwork mask 

Assign a routing method 

Examining all the options available to ifconfig would require several dozen pages. 
Because this material is rarely used and differs with each implementation, administrators 
are referred to their operating system documentation. As an example, the Linux version 
of the ifconfig command uses this general format: 

ifconfig interface_type IP_Address

interface_type is the interface's device driver name (such as lo for loopback, ppp for PPP, and 
eth for Ethernet), and IP_Address is the IP address used by that interface. 

When used with only the name of an interface, ifconfig usually returns information 
about the current state of the interface, as shown in the following example. In this 
example, a query of both an Ethernet card (called ec0) and the loopback driver (called 
lo0) is performed. The status flags of the interface are followed by the Internet address, 
the broadcast address, and optionally a network mask, which defines the Internet 
address used for address comparison when routing. 

tpci_sco1-12> ifconfig ec0

ec0: flags=807<UP,BROADCAST,DEBUG,ARP>



     inet 146.8.12.15 netmask fffff00 broadcast

146.8.12.15

tpci_sco1-13> ifconfig lo0

lo0: flags=49<UP,LOOPBACK,RUNNING>

     inet 127.0.0.1 netmask ff000000

The preceding example shows that the Ethernet connection ec0 is active (UP), able to 
transmit broadcasts (BROADCAST), and is in debugging mode (DEBUG). Also, the ARP 
protocol is active (ARP). You may recall that a broadcast message is sent to all machines 
on the local network by setting the host ID address to all 1s. 

Once the ifconfig command has been run and an interface is active, many operating 
systems require the route command to be issued to add or remove routes in the kernel's 
routing table. This is needed to enable the local machine to find other machines. The 
general format of the route command on a UNIX or Linux system is this: 

route add|del IP_Address

Either add or del is specified to add or remove the route from the kernel's routing table, 
and IP_Address is the remote route being affected. 

The current contents of the kernel's routing table can be displayed on some systems by 
entering the command route by itself on the command line. For example, on a Linux 
system that is set up only with the loopback driver, you see an output like this: 

$ route

Kernel Routing Table

Destination    Gateway   Genmask   Flags  MSS  Window  Use 
Iface

loopback         *       255.0.0.0   U    1936  0       16  
lo

The important columns are the destination name, which shows the name of the configured 
target (in this case only loopback), the mask to be used (Genmask), and the interface 
(Iface, in this case /dev/lo). You can force route to display the IP addresses instead of 
symbolic names by using the -n option: 



$ route -n

Kernel Routing Table

Destination    Gateway   Genmask   Flags  MSS  Window  Use 
Iface

127.0.0.1         *       255.0.0.0   U    1936  0       16  
lo

Not all UNIX and Linux versions show this type of output from the route command. 

The use of the ifconfig and route programs can be shown in the setup of a Slackware 
Linux system's Ethernet connection. To make the Ethernet interface active, the ifconfig 
command is issued with the Ethernet device name (eth0 on a Slackware Linux system) and 
the local IP address. For example, the command 

ifconfig eth0 147.123.20.1

sets up the local machine with the IP Address 147.123.20.1. The interface is the Ethernet 
device /dev/eth0. The interface can then be checked with the ifconfig command using the 
interface name: 

$ ifconfig eth0

eth0    Link encap 10Mps: Ethernet Hwaddr

    inet addr 147.123.20.1 Bcast 147.123.1.255 Mask 
255.255.255.0

    UP BROADCAST RUNNING  MTU 1500 Metric 1

    RX packets:0 errors:0 dropped:0 overruns:0

    TX packets:0 errors:0 dropped:0 overruns:0

You may notice in the output that the broadcast address was set based on the local 
machine's IP address. This is used by TCP/IP to access all machines on the local area 
network at once. The Message Transfer Unit (MTU) size is usually set to the maximum 
value of 1500 (for Ethernet networks). 

Next, an entry is added to the kernel routing tables to let the kernel know about the 
local machine's network address. The IP address that is used with the route command is 
not your local machine's IP address, but that of the network as a whole without the 



local identifier. To set the entire local are network at once, the -net option of the 
route command is used. In the case of the IP addresses shown earlier, the command would 
be this: 

route add -net 147.123.20.0

This adds all the machines on the network identified by the network address 147.123.20 to 
the kernel's list of accessible machines. An alternative method is to use the 
/etc/networks file. Once the route has been added to the kernel routing tables, it can be 
tested with the ping command. 

The inetd Daemon

The inetd program is a holdover from the early days of TCP/IP UNIX development. When a 
UNIX machine was started, it would activate TCP/IP and immediately accept connections 
at its ports, spawning a process for each. This could result in many identical processes, 
one for each available port. 

To control the processes better, the inetd program was developed to handle the port 
connections itself, offloading that task from the server. The primary difference is that 
inetd creates a process for each connection that is established, whereas the server 
creates a process for each port (which leads to many unused processes). 

On many systems, some of the test programs and status information utilities are run 
through inetd. Typically, services like echo, discard, and time use inetd. 

The inetd program uses a configuration file usually called /etc/inetd.cfg, /etc/inetd.conf, 
or /etc/inetd.cf on UNIX systems. An extract of a sample /etc/inetd.cfg file is shown in the 
following code: 

#      @(#)inetd.conf     5.2 Lachman System V STREAMS TCP  
source

#

#     System V STREAMS TCP - Release 4.0

ftp       stream     tcp     nowait     NOLUID     /etc/ftpd       
ftpd



telnet    stream     tcp     nowait     NOLUID     
/etc/telnetd    telnetd

shell     stream     tcp     nowait     NOLUID     /etc/rshd       
rshd

login     stream     tcp     nowait     NOLUID     
/etc/rlogind    rlogind

exec      stream     tcp     nowait     NOLUID     
/etc/rexecd     rexecd

finger    stream     tcp     nowait     nouser     
/etc/fingerd    fingerd

comsat    dgram      udp     wait       root       
/etc/comsat     comsat

ntalk     dgram      udp     wait       root       
/etc/talkd      talkd

echo      stream     tcp     nowait     root       internal

discard   stream     tcp     nowait     root       internal

chargen   stream     tcp     nowait     root       internal

daytime   stream     tcp     nowait     root       internal

time      stream     tcp     nowait     root       internal

echo      dgram      udp     wait       root       internal

discard   dgram      udp     wait       root       internal

chargen   dgram      udp     wait       root       internal

daytime   dgram      udp     wait       root       internal

time      dgram      udp     wait       root       internal

The columns show the service name (which corresponds to an entry in the services file, 
such as /etc/services), the socket type (stream, raw, or datagram), the protocol name, 
whether inetd can accept further connections at the same port immediately (nowait) or 
must wait for the server to finish (wait), the login that owns the service, the server 
program name, and any optional parameters needed for the server program. 

The configuration file is read when the server is booted and every time a hang-up signal 
is received from an application. This enables dynamic changes to the file, because any 



modifications would be read and register on the next file read. 

The netstat Command

The netstat program or a similar utility provides comprehensive information about the 
local system and its TCP/IP implementation. This is the program most commonly used by 
administrators to quickly diagnose a problem with TCP/IP. The actual information and its 
format supplied by the netstat utility differs with the operating system implementation, 
but it usually supplies the following important summaries, each of which is covered in 
more detail later: 

Communications end points 

Network interface statistics 

Information on the data buffers 

Routing table information 

Protocol statistics 

On some systems, information about the interprocess communications and other protocol 
stacks might be appended. The information to be displayed can usually be toggled with a 
command-line option. The output from a typical UNIX installation that uses the netstat 
command is shown in the next few sections, which discuss netstat and its output in more 
detail. The output and meaning might be different with other operating systems, but the 
general purpose of the diagnostic tool remains the same. 

Communications End Points

The netstat command with no options provides information on all active communications 
end points. To display all end points (active and passive), netstat uses the -a option. 

The output is formatted into columns showing the protocol (Proto), the amount of data 
in the receive and send queues (Recv-Q and Send-Q), the local and remote addresses, and 
the current state of the connection. A truncated sample output is shown here: 

$ netstat -a



Active Internet connections (including servers)

Proto Recv-Q Send-Q  Local Address          Foreign Address        
(state)

ip         0      0  *.*                    *.*

tcp        0   2124  tpci.login             merlin.1034            
ESTABL.

tcp        0      0  tpci.1034              prudie.login           
ESTABL.

tcp    11212      0  tpci.1035              treijs.1036            
ESTABL.

tcp        0      0  tpci.1021              reboc.1024             
TIME_WAIT

tcp        0      0  *.1028                 *.*                    
LISTEN

tcp        0      0  *.*                    *.*                    
CLOSED

tcp        0      0  *.6000                 *.*                    
LISTEN

tcp        0      0  *.listen               *.*                    
LISTEN

tcp        0      0  *.1024                 *.*                    
LISTEN

tcp        0      0  *.sunrpc               *.*                    
LISTEN

tcp        0      0  *.smtp                 *.*                    
LISTEN

tcp        0      0  *.time                 *.*                    
LISTEN

tcp        0      0  *.echo                 *.*                    
LISTEN

tcp        0      0  *.finger               *.*                    
LISTEN



tcp        0      0  *.exec                 *.*                    
LISTEN

tcp        0      0  *.telnet               *.*                    
LISTEN

tcp        0      0  *.ftp                  *.*                    
LISTEN

tcp        0      0  *.*                    *.*                    
CLOSED

udp        0      0  *.60000                *.*

udp        0      0  *.177                  *.*

udp        0      0  *.1039                 *.*

udp        0      0  *.1038                 *.*

udp        0      0  localhost.1036         localhost.syslog

udp        0      0  *.1034                 *.*

udp        0      0  *.*                    *.*

udp        0      0  *.1027                 *.*

udp        0      0  *.1026                 *.*

udp        0      0  *.sunrpc               *.*

udp        0      0  *.1025                 *.*

udp        0      0  *.time                 *.*

udp        0      0  *.daytime              *.*

udp        0      0  *.chargen              *.*

udp        0      0  *.route                *.*

udp        0      0  *.*                    *.*

The output shown for the netstat commands in this section 
is from an SCO UNIX system. Each implementation of netstat is 
slightly different, so the output columns might change, and 



different options might be needed to obtain each type of report. 
Check with your system documentation for more details about 
your netstat implementation. 

In the preceding example, there are three active TCP connections, as identified by the 
state ESTABL. One has data being sent (as shown in the Send-Q column), and another has 
incoming data in the queue. The network names and port numbers of the connection ends 
are shown whenever possible. An asterisk (*) means there is no end point associated with 
that address yet. 

One connection is waiting to be hung up, identified by TIME_WAIT in the state column. 
After 30 seconds, these sessions are terminated and the connection freed. Any row with 
LISTEN as the state has no connection at the moment, and is waiting. There is no state 
column for UDP sessions because they do not have an end-to-end connection (as discussed 
on Day 5, "Gateway and Routing Protocols"). A CLOSED entry in the output shows that 
the connection is closed but hasn’t switched over to LISTEN yet. 

Network Interface Statistics

The behavior of the network interface (such as the network interface card) can be 
determined with the -i option to the netstat command. This information quickly shows an 
administrator whether there are major problems with the network connection. 

The netstat -i command displays the name of the interface, the maximum number of 
characters a packet can contain (Mtu), the network and host addresses or names, the 
number of input packets (Ipkts), input errors (Ierrs), output packets (Opkts), output errors 
(Oerrs), and number of collisions (Collis) experienced in the current sampling session. The 
collisions column has relevance only for a networking system that enables packet 
collisions, such as Ethernet. A sample output from a netstat -i command is shown here: 

$ netstat -i

Name   Mtu   Network     Address       Ipkts   Ierrs Opkts   
Oerrs Collis

ec0    1500  tpci        merlin         34     0     125     
0     0

lan0   1497  47.80       tpci_hpws4  11625     0   11625     
0     0

lo0    8232  loopback    localhost     206     0     206     



0     0

An administrator can obtain more specific information about one interface by using the -I 
option with a device name and a time interval, specified in seconds, such as netstat -I ec0 
30 to obtain specific information about the behavior of the ec0 (Ethernet) interface over 
the last 30 seconds. 

Data Buffers

Information about the data buffers can be obtained with the netstat command's -m option. 
Monitoring the behavior of the buffers is important, because they directly impact the 
performance of TCP/IP. The output of the netstat -m command differs depending on the 
version of UNIX in use, reflecting the different implementations of the TCP/IP code. 

The netstat -m command output from a System V-based UNIX version is shown in the 
following code example. Entries are provided for the streamhead, queue, message 
descriptor table (mblks), data descriptor table (dblks), and the different classes of data 
descriptor tables. The columns show the number of blocks configured (config) and 
currently allocated (alloc), the number of columns free (free), the total number of 
blocks in use (total), the maximum number of blocks that were in use at one time (max), 
and the number of times a block was not available (fail). 

$ netstat -m

streams allocation:

                     config   alloc    free   total     max    
fail

streams                 292      79     213     233      80       
0

queues                 1424     362    1062     516     368       
0

mblks                  5067     196    4871    3957     206       
0

dblks                  4054     196    3858    3957     206       
0

class 0,    4 bytes     652      50     602     489      53       
0



class 1,   16 bytes     652       2     650     408       4       
0

class 2,   64 bytes     768       6     762    2720      14       
0

class 3,  128 bytes     872     105     767     226     107       
0

class 4,  256 bytes     548      21     527      36      22       
0

class 5,  512 bytes     324      12     312      32      13       
0

class 6, 1024 bytes     107       0     107       1       1       
0

class 7, 2048 bytes      90       0      90       7       1       
0

class 8, 4096 bytes      41       0      41      38       1       
0

total configured streams memory: 1166.73KB

streams memory in use: 44.78KB

maximum streams memory used: 58.57KB

For the administrator, the failure column is important. It should always show 0s. If a 
larger number appears, that resource has been overtaxed and the number of blocks 
assigned to that resource should be increased (followed by a kernel rebuild and a reboot 
of the system to effect the changes). 

Routing Table Information

Routing tables are continually updated to reflect connections to other machines. To 
obtain information about the routing tables, the netstat -r and -rs options are used. (The 
latter generates statistics about the routing tables.) 

The output from netstat -r and netstat -rs commands are shown in the following code 
example. The columns show the destination machine, the address of the gateway to be 
used, a flag to show whether the route is active (U) and whether it leads to a gateway or 



a machine (H for host), a reference counter (Refs) that specifies how many active 
connections can use that route simultaneously, the number of packets that have been 
sent over the route (Use), and the interface name. 

$ netstat -r

Routing tables

Destination      Gateway            Flags    Refs     Use  
Interface

localhost        localhost          UH          4      10  
lo0

merlin           localhost          UH          2       2  
ec0

treijs           hoytgate           UG          0       0  
ec0

47.80            bcarh736           U          12   21029  
lan0

tpci sco4-57> netstat -rs

routing:

              0 bad routing redirects

              0 dynamically created routes

              0 new gateways found unreachable

              2 destinations found unreachable

            122 uses of a wildcard route

              0 routes marked doutbful

              0 routes cleared of being doubtful

              0 routes deleted

Protocol Statistics



Statistics about the overall behavior of network protocols can be obtained with the 
netstat -s command. This usually provides summaries for IP, ICMP, TCP, and UDP. The 
output from this command is useful for determining where an error in a received packet 
was located, which then leads the user to isolate whether that error was caused by a 
software or network problem. 

Issuing the netstat -s command provides a verbose output. A sample output is shown in the 
following code. The entries are self-explanatory. 

tpci_sco4-67> netstat -s

ip:

     183309 total packets received

     0 bad header checksums

     0 with size smaller than minimum

     0 with data size < data length

     0 with header length < data size

     0 with data length < header length

     0 with unknown protocol

     13477 fragments received

     0 fragments dropped (dup or out of space)

     0 fragments dropped after timeout

     0 packets reassembled

     0 packets forwarded

     0 packets not forwardable

     75 no routes

     0 redirects sent

     0 system errors during input

     309 packets delivered

     309 total packets sent



     0 system errors during output

     0 packets fragmented

     0 packets not fragmentable

     0 fragments created

icmp:

     1768 calls to icmp_error

     0 errors not generated because old message was icmp

     Output histogram:

          destination unreachable: 136

     0 messages with bad code fields

     0 messages < minimum length

     0 bad checksums

     0 messages with bad length

     Input histogram:

          destination unreachable: 68

     0 message responses generated

     68 messages received

     68 messages sent

     0 system errors during output

tcp:

    9019 packets sent

              6464 data packets (1137192 bytes)

          4 data packets (4218 bytes) retransmitted

          1670 ack-only packets (918 delayed)

          0 URG only packets



          0 window probe packets

          163 window update packets

          718 control packets

               24 resets

     9693 packets received

          4927 acks (for 74637 bytes)

          37 duplicate acks

          0 acks for unsent data

          5333 packets (1405271 bytes) received in-sequence

          23 completely duplicate packets (28534 bytes)

          0 packets with some dup. data (0 bytes duped)

          38 out-of-order packets (5876 bytes)

          0 packets (0 bytes) of data after window

          0 window probes

          134 window update packets

          0 packets received after close

          0 discarded for bad checksums

          0 discarded for bad header offset fields

          0 discarded because packet too short

          0 system errors encountered during processing

     224 connection requests

     130 connection accepts

     687 connections established (including accepts)

     655 connections closed (including 0 drops)

     24 embryonic connections dropped

     0 failed connect and accept requests



     0 resets received while established

     5519 segments updated rtt (of 5624 attempts)

     5 retransmit timeouts

          0 connections dropped by rexmit timeout

     0 persist timeouts

     0 keepalive timeouts

          0 keepalive probes sent

          0 connections dropped by keepalive

     0 connections lingered

          0 linger timers expired

          0 linger timers cancelled

          0 linger timers aborted by signal

udp:

     0 incomplete headers

     0 bad data length fields

     0 bad checksums

     68 bad ports

     125 input packets delivered

     0 system errors during input

     268 packets sent

The ping Utility

The ping (Packet Internet Groper) utility is used to query another system to ensure that 
a connection is still active. (You may recall the ruptime utility from yesterday, which 



also does this. However, ruptime waits five minutes before trying the remote, and you may 
want to know right away if the connection is active.) The ping command is available on 
most operating systems that implement TCP/IP. 

The ping program operates by sending out an Internet Control Message Protocol (ICMP) 
echo request. If the destination machine's IP software receives the ICMP request, it issues 
an echo reply immediately. The sending machine continues to send an echo request until 
the ping program is terminated with a break sequence (Ctrl+C or the Delete key in UNIX). 
After termination, ping displays a set of statistics. A sample ping session is shown here: 

$ ping merlin

PING merlin: 64 data bytes

64 bytes from 142.12.130.12: icmp_seq=0.  time=20.  ms

64 bytes from 142.12.130.12: icmp_seq=1.  time=10.  ms

64 bytes from 142.12.130.12: icmp_seq=2.  time=10.  ms

64 bytes from 142.12.130.12: icmp_seq=3.  time=20.  ms

64 bytes from 142.12.130.12: icmp_seq=4.  time=10.  ms

64 bytes from 142.12.130.12: icmp_seq=5.  time=10.  ms

64 bytes from 142.12.130.12: icmp_seq=6.  time=10.  ms

--- merling PING Statistics ---

7 packets transmitted, 7 packets received, 0% packet loss

round-trip (ms) min/avg/max = 10/12/20

An alternate method to invoke ping is to provide the number of times you want it to 
query the remote. Also, you could provide a packet length as a test. The following 
example instructs ping to use 256 data byte packets and try five times. Using ping to send 
large packets is one method of determining the network's behavior with large packet 
sizes, especially when fragmentation must occur. The ping program is also useful for 
monitoring response times of the network, by observing the reply time on packets sent as 
the network load (or the machine load) changes. This information can be very useful in 
optimization of TCP/IP. 

$ ping merlin 256 5

PING merlin: 256 data bytes



256 bytes from 142.12.130.12: icmp_seq=0.  time=20.  ms

256 bytes from 142.12.130.12: icmp_seq=1.  time=10.  ms

256 bytes from 142.12.130.12: icmp_seq=2.  time=10.  ms

256 bytes from 142.12.130.12: icmp_seq=3.  time=20.  ms

256 bytes from 142.12.130.12: icmp_seq=4.  time=10.  ms

--- merling PING Statistics ---

5 packets transmitted, 5 packets received, 0% packet loss

round-trip (ms) min/avg/max = 10/13/20

Some older implementations of ping simply reply with a message that the system at the 
other end is active. (The message is of the form X is alive.) To obtain the verbose messages 
shown previously, the -s option must be used. 

The ping program is useful for diagnostics because it provides four important pieces of 
information: whether the TCP/IP software is functioning correctly; whether a local 
network device can be addressed (validating its address); whether a remote machine can 
be accessed (again validating the address and testing the routing); and verifying the 
software on the remote machine. 

Most non-UNIX TCP/IP implementations provide ping utilities as part of their suite. For 
example, Figure 7.4 shows the NetManage ChameleonNFS ping utility. The Chameleon 
ping sends only a single ICMP packet instead of a continuous stream, but is useful for 
verifying that a remote machine is responding. 

Figure 7.4. ChameleonNFS uses a ping utility to send a single packet. 

Windows 95 has a ping utility built into the distribution software, but it is DOS-based and 
doesn't use the Windows 95 GUI. Figure 7.5 shows the Windows 95 ping utility used to ping 
another machine on the network. 

Figure 7.5. The Windows 95 ping utility is DOS-based. 

Tracing a Connection

There is a tracing option built into TCP/IP. When simpler methods have failed, this option 
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can be used to trace a problem. To activate the trace, a system call is sent to the end 
point that turns on a flag. Most TCP/IP implementations enable the tracing option to be 
turned on from the command line using the -d (debug) option. When tracing is turned on, 
all activities are echoed to a buffer or to the screen, depending on the system 
configuration. 

The output from the TCP/IP tracing option is examined using the program trpt (trace 
report). A specific connection can be specified, or all behavior passing through TCP/IP can 
be displayed. The output from trpt is verbose and of little interest to most users. 

Summary

This chapter has shown you the basic administration programs used with TCP/IP, as well as 
the configuration files that are necessary in order to use symbolic names. Although this 
information is not likely to be used by most users, knowing the available tools and the 
type of diagnostics that can be produced is useful in better understanding TCP/IP. 

Q&A

All the TCP/IP protocols available to you are listed in a system configuration file. 
Which file is this? 

All TCP/IP protocols are listed in /etc/ protocols. The file lists the protocol name and 
the corresponding protocol number. 

What is a loopback driver used for? 

The loopback driver is a virtual circuit within the host machine, avoiding all contact 
with the physical network itself. The most common use of a loopback driver is as a 
diagnostic. By sending data to the loopback driver, you can make sure the protocols are 
working correctly on your machine. Without this capability, it would be difficult to 
separate network problems and software configuration problems. 

What does the following excerpt from a netstat -a command tell you? 

Proto Recv-Q Send-Q  Local Address          Foreign Address        
(state)



ip         0      0  *.*                    *.*

tcp        0   1024  tpci.login             merlin.1034            
ESTABL.

tcp     8756      0  tpci.1035              treijs.1036            
ESTABL.

tcp        0      0  tpci.1021              reboc.1024             
TIME_WAIT

tcp        0      0  *.1028                 *.*                    
LISTEN

tcp        0      0  *.6000                 *.*                    
LISTEN

This extract shows there are two established TCP connections (to merlin.1034 and 
treijs.1036), one of which is sending information and the other receiving. The connection 
to reboc.1024 is waiting to hang up. There are two ports waiting for a connection. 

What is the utility ping used for? 

The ping utility is used to query another system. It sends an ICMP message to the remote 
and waits for a reply. The ping command is very useful for testing connections. 

What command gives you overall statistics about the network protocols running 
on your system? 

One of the best summaries is obtained with the netstat -s command. 
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TCP/IP and Networks

In the previous seven days you have seen TCP/IP and its associated protocols covered in 
considerable depth. It is now time to begin looking at TCP/IP in a broader sense. Today 
you learn how TCP/IP can operate with other protocols in a networked system. You also 
learn about protocols that don't use TCP/IP but are commonly encountered. 



It is useful to understand how TCP/IP operates in conjunction with other protocols so 
that the management of TCP/IP is clearer (you learn about managing a TCP/IP network 
in the next few days). You might find that some material today is repeated from earlier 
days, or rephrased slightly to present a different approach to the subject. In a sense, 
today acts as a summary, albeit incomplete, of the TCP/IP system as a whole. 

To round out the day, I look at the miscellaneous optional services provided through 
TCP/IP. Most are dedicated to a simple task, but they do serve their purpose well and use 
TCP/IP, hence their inclusion here. 

TCP/IP and Other Protocols

TCP/IP is not often found as a sole protocol. It is usually one of several protocols used 
in any given network. Therefore, the interactions between TCP/IP (and its associated 
protocols) and the other protocols that might be working with it must be understood. It 
is easiest to begin looking at this subject from a local area network point of view and 
then expand that view to cover internetworks. 

The layers of a TCP/IP protocol, as well as most other OSI-model protocols, are designed 
to be independent of each other, enabling mixing of protocols. When a message is to be 
sent over the network to a remote machine, each protocol layer builds on the packet of 
information sent from the layer above, adding its own header and then passing the 
packet to the next lower layer. After being received over the network (packaged in 
whatever network format is required), the receiving machine passes the packet back up 
the layers, removing the header information one layer at a time. 

Replacing any layer in the protocol stack requires that the new protocols can 
internetwork with the other layers, as well as perform all the required functions of 
that layer (for example, duplicating the services of the replaced protocol). Also, 
performing duplicate operations in more than one layer (redundant operations) should 
be avoided for obvious reasons. 

To examine the internetworking of the layers and the substitution or addition of 
others, a simple installation can be used as a starting point. Figure 8.1 shows a simple 
layered architecture using TCP and IP with the Ethernet network. Figure 8.1 also shows 
the assembly of Ethernet packets as they pass from layer to layer. 

Figure 8.1. A simple layered architecture. 

As you saw earlier in this book, the process begins with a message of some form from an 
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Upper Layer Protocol (ULP) which itself is passing a message from an application. As the 
message is passed to TCP, it adds its own header information and passes to the IP layer, 
which does the same. When the IP message is passed to the Ethernet layer, Ethernet adds 
its own information at the front and back of the message and sends the message out over 
the network. 

The operating system itself is not a single layer but runs 
throughout the entire layered architecture with connections 
to each layer. The interfaces between the each layer's 
protocols differ depending on the host machine, but it is 
convenient to ignore the operating system's influence for 
simplicity. 

Although this simple model might seem ideal, in practice it has a few problems. Most 
importantly, it requires IP to interface directly with the Ethernet layer. This interface 
is not a clean one; it has many connections that break from the ideal layered 
architecture. 

LAN Layers

To expand on the layered system requires a better understanding of the interfaces to 
the network layer in a LAN. Figure 8.2 shows an expanded layer architecture for a LAN. 
This type of architecture applies for collision sense multiple access (CSMA) and 
collision detect (CD) networks such as Ethernet. 

Figure 8.2. Network architecture. 

The LAN involves some additional layers. The Logical Link Control (LLC) layer is an 
interface between the IP layer and the network layers. There are several kinds of LLC 
configurations, but it is sufficient at this point to know its basic role as a buffer 
between the network and IP layers either as a simple system for a connectionless service 
or as an elaborate system for a connection-based service. LLC is usually used with the 
High-Level Data Link Control (HDLC) link standard. For connectionless service, this 
uses an unnumbered information (UI) message frame, whereas connection-based services can 
use the asynchronous balanced mode (ABM) message frame, both supported by HDLC. The 
configuration of LLC with respect to TCP/IP is important. 

The Media Access Control (MAC) layer was mentioned briefly on Day 2, "TCP/IP and the 
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Internet." MAC is responsible for managing traffic on the network, such as collision 
detection and transmission times. It also handles timers and retransmission functions. 
MAC is independent of the network medium but is dependent on the protocol used on the 
network. 

The physical layer in the Network architecture is composed of several services. The 
Attachment Unit Interface (AUI) provides an attachment between the machine's 
physical layer and the network medium. Typically, the AUI is where the network ports 
or jacks are located. 

The Medium Attachment Unit (MAU) is composed of two parts: the Physical Medium 
Attachment (PMA) and the Medium Dependent Interface (MDI), both of which can be 
considered as separate parts as shown in the figure. The MAU is responsible for managing 
the connection of the machine to the LAN medium itself, as well as providing basic data 
integrity checking and network medium monitoring. The MAU has functions that check 
the signal quality from the network and test routines for verifying the network's 
correct operation. 

When these layers are added to the layered architecture for a protocol stack, the IP-
Ethernet layer is separated. This is shown in Figure 8.3. This type of configuration is 
more common than the one shown in Figure 8.1 and is usually called the IP/802 
configuration (because Ethernet is defined by the IEEE 802 specification). 

Figure 8.3. TCP/IP with LLC/MAC. 

The IP/802 LAN can be connectionless using a simple form of LLC called LLC Type 1, 
which supports unnumbered information (UI). The LLC and MAC layers help separate IP 
from the physical layer. More headers are added to the message packet, but these have 
useful information. The LLC header has both source and destination service access 
points (SAP) in it to identify the layers above. 

UDP is frequently used instead of TCP in this type of network. UDP is not as complex as 
TCP, so the entire network's complexity is reduced. However, UDP has no message 
integrity functionality built in, so a different form of LLC (called LLC Type 2) is used 
that implements these functions. LLC Type 2 provides the data integrity functionality 
that TCP usually provides, such as sequencing, transfer window management, and flow 
control. The disadvantage is that these functions are now below the IP layer, instead 
of above it. In case of fatal problems with the LLC layer, this can result in problems 
that must be dealt with in the application layer itself. 

The differences between TCP and LLC Type 1 versus UDP 
and LLC Type 2 must be carefully weighed by a system 
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administrator. The TCP/LLC 1 combination is more complex than 
UDP/LLC 2 but offers excellent reliability and integrity, 
whereas UDP/LLC 2 is better for high-throughput networks. In 
some cases, UDP/LLC 2 results in duplicated functions, because 
the LLC versions differ considerably among vendors. 

NetBIOS and TCP/IP

A popular PC-oriented network operating system is NetBIOS, which can be cleanly 
integrated with TCP/IP. Figure 8.4 shows the network architecture for this kind of LAN. 
NetBIOS resides above the TCP or UDP protocol, although it usually has solid links 
into that layer (so the two layers cannot be cleanly separated). NetBIOS acts to 
connect applications together in the upper layers, providing messaging and resource 
allocation. 

Figure 8.4. The NetBIOS Network architecture. 

Three Internet port numbers are allocated for NetBIOS. These are for the NetBIOS 
name service (port 137), datagram service (port 138), and session service (port 139). There 
is also the provision for a mapping between Internet's Domain Name Service (DNS) and 
the NetBIOS Name Server (NBNS). (DNS is covered in detail on Day 11, "Domain Name 
Service.") The NetBIOS Name Server is used to identify PCs that operate in a NetBIOS 
area. In the interface between NetBIOS and TCP, a mapping between the names is used to 
produce the DNS name. 

IP can be configured to run above NetBIOS, eliminating TCP or UDP entirely and 
running NetBIOS as a connectionless service. In this case, NetBIOS takes over the 
functions of the TCP/UDP layer, and the upper layer protocols must have the data 
integrity, packet sequencing, and flow control functions. This is shown in Figure 8.5. In 
this architecture, NetBIOS encapsulates IP datagrams. Strong mapping between IP and 
NetBIOS is necessary so that NetBIOS packets reflect IP addresses. (To do this, NetBIOS 
codes the names as IP.nnn.nnn.nnn.nnn.) 

Figure 8.5. Running IP above NetBIOS. 

This type of network requires that the upper layer protocols (ULPs) handle all the 
necessary features of the TCP protocol, but the advantage is that the network 
architecture is simple and efficient. For some networks, this type of approach is well 
suited, although the development of suitable ULPs can be problematic at times. 
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XNS and TCP/IP

The Xerox Network System (XNS) was widely used in the past and still retains a 
reasonable percentage of network use. XNS is popular because Xerox released the code 
to the public domain, hence making it a cost-effective network system. In most cases, XNS 
protocols were designed to work with Xerox's Ethernet, as well. XNS now appears in 
several commercial network software packages. 

XNS can use IP, as shown in Figure 8.6. The Sequenced Packet Protocol (SPP) is above the 
IP layer, providing some TCP function, although it is not as complete a protocol. In the 
ULP layer is the Courier protocol, which provides presentation and session layer 
services. 

Figure 8.6. The XNS Network architecture. 

XNS uses the term Internet Transport Protocols to refer to the set of protocols used, 
including IP. Among the protocols is the Routing Information Protocol (RIP) and an 
error protocol similar to the Internet Control Message Protocol (ICMP). 

IPX and UDP

Novell's NetWare networking product has a protocol similar to IP called the Internet 
Packet Exchange (IPX), which is based on Xerox's XNS. The IPX architecture is shown in 
Figure 8.7. IPX usually uses UDP for a connectionless protocol, although TCP can be 
used when combined with LLC Type 1. 

Figure 8.7. The IPX Network architecture. 

The stacking of the layers (with IPX above UDP) ensures that the UDP and IP headers 
are not affected, with the IPX information encapsulated as part of the usual message 
process. As with other network protocols, a mapping is necessary between the IP address 
and the IPX addresses. IPX uses network and host numbers of 4 and 6 bytes, respectively. 
These are converted as they are passed to UDP. 

It is possible to reconfigure the network to use IPX networks by using TCP instead of 
UDP and substituting the connectionless LLC Type 1 protocol. This results in the 
architecture shown in Figure 8.8. When using this layer architecture, IP addresses are 
mapped using ARP. 
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Figure 8.8. An IPX-based Network architecture. 

ARCnet and TCP/IP

ARCnet is widely used for LANs and has an Internet RFC for using it with IP. The 
architecture is similar to that of the IPX-based network but with ARCnet replacing IPX, 
as shown in Figure 8.9. Messages passed down from IP are encapsulated into ARCnet 
datagrams. 

Figure 8.9. The ARCnet-based Network architecture. 

A special placement of the IP datagram behind the client data area of the ARCnet 
header ensures that IP compatibility is maintained if the message must pass out of the 
ARCnet network (through a converter). IP addresses are mapped to ARCnet addresses 
using ARP. The protocol also supports RARP to some extent. 

FDDI Networks

The Fiber Distributed Data Interface (FDDI) is an ANSI-defined high-speed network that 
uses fiber-optic cable as a transport medium. FDDI is gaining string support because of 
the high throughout that can be achieved. For TCP/IP, FDDI uses a layered architecture 
like the other networks discussed. FDDI differs slightly from other media in that there 
are two sublayers for the physical layer. 

FDDI's addressing scheme is similar to other Ethernet networks, requiring a simple 
mapping, as seen with the Ethernet system. IP and ARP can both be used over FDDI. IP is 
used with the LLC Type 1 connectionless service. 

The frame size for FDDI is set to 4,500 bytes, including the header and other framing 
information. After that is taken into account, there are 4,470 bytes available for data. 
(The Internet RFC for FDDI defines 4,096 bytes for data and 256 bytes for header layers 
above the MAC layer.) This large packet size can cause problems for some gateways, so 
routing for FDDI packets must be carefully chosen to prevent truncation or corruption 
of the packet by a gateway that can't handle the large frame size. In case of doubt, 
FDDI packets should be reduced in size to 576 data bytes. 

X.25 and IP
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X.25 networks modify the network architecture by using an OSI TP4 layer on top of IP, 
and the X.25 Packet Layer Procedures (PLP) layer below IP. This is shown in Figure 8.10. 
TP4 is a TCP-like protocol that does not use port identifiers. The destination and source 
fields in the header are the transport service access points (TSAPs). TP4 is more complex 
than TCP, which sometimes works against it. 

Figure 8.10. The X.25-based Network architecture. 

X.25 is not often used on a LAN, but it is used as a connection to a packet-switched 
network. An Internet RFC defines the rules for X.25 IP-based packet switching, 
including the limits for IP datagram sizes (576 bytes) and virtual circuits. 

ISDN and TCP/IP

The Integrated Services Digital Network (ISDN) provides packet-switched TCP/IP 
networks. The architecture is shown in Figure 8.11. IP is not in the stack because it is 
usually incorporated into CLNP. (Both TCP and IP can be used with ISDN instead of OSI 
TP4 and CLNP, but the ISDN versions are optimized for that network.) 

Figure 8.11. The ISDN-based Network architecture. 

ISDN uses a more complex architecture than most networks, replacing gateways and 
routers with terminal adapters and ISDN nodes. These perform the equivalent functions 
but have a more rigid (and complex) internal architecture. The details are not relevant 
here, so the interested reader is referred to a good ISDN book. 

Switched Multi-Megabit Data Services and IP

The Switched Multi-Megabit Data Services (SMDS) system is a public packet-switched 
connectionless service that provides high throughput with large packet sizes (up to 9188 
data bytes). SMDS uses a subscriber-to-network and network-to-subscriber access 
mechanism for flow control. SMDS works with IP by interfacing the SMDS to the LLC 
layer. 

SMDS using IP supports multiple logical IP subnetworks (LISs), which can be managed 
separately but treated as a single unit by SMDS. This method requires all the 
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subnetworks to have to same IP address. The architecture of the SMDS layers is quite 
complex, so they are not covered in detail here. SMDS uses LLC Type 1 frames. 

Asynchronous Transfer Mode (ATM) and BISDN

Two new protocols for high-speed internetworks that are becoming popular are 
Asynchronous Transfer Mode (ATM) and Broadband ISDN (BISDN). The architecture on 
the user's machine is similar to the TCP/IP architectures discussed earlier, although 
additional layers can be added to provide new services, such as video and sound 
capabilities. 

The router, gateway, or other device that accesses the high-speed network is more 
complex as well. Called a terminal adapter (as with ISDN), it provides a sophisticated 
interface between user layers and adaptation layers, which are application-specific. 
From the terminal adapter, traffic is passed to the ATM service, which provides 
switching and multiplexing services. 

Windows 95 and TCP/IP

Because Windows 95 is supposed to become the dominant operating system on PC machines 
running a DOS or Windows operating system, it is worth taking a quick look at how 
Windows 95 integrates networking software into its kernel. The approach used by 
Windows 95 is similar to that of Windows NT and OS/2, so the knowledge is useful for 
many operating systems on common client devices in today's LANs. 

Windows 95 refines the network architecture used in Windows for Workgroups and 
Windows NT, resulting in better performance and reliability, as well as catering to the 
demands of different network requirements such as multiple protocol support. Because 
Windows 95 supports many different network protocols in 16- and 32-bit Virtual Mode 
Driver (VxD) versions, the architecture must provide the flexibility to accommodate a 
number of structures. 

The Windows 95 architecture is layered; a layered architecture is the most common 
networking structure (such as OSI and TCP/IP). The network architecture used in 
Windows 95 is known as Microsoft's Windows Open Services Architecture (WOSA). WOSA 
was developed to enable applications to work with several different network types, and 
it includes a set of interfaces designed to enable coexistence of several network 
components. 



The networking software components of Windows 95 are shown in their respective 
layers in Figure 8.12. Many of the network components are familiar from earlier 
versions of Windows for Workgroups, Windows NT, or other operating systems and 
communications protocols. I look at each layer in the Windows 95 architecture in a 
little more detail so that the function of each component is better understood. Because 
32-bit applications are becoming dominant with Windows 95 and Windows NT, I'll look at 
them in this section. Older 16-bit applications are treated slightly differently, but the 
principles are the same. 

Figure 8.12. The Windows 95 networking software architecture showing the 
components. 

●     API: The standard Win32 Application Programming Interface (API, the same system 
used with Windows NT). The API handles remote file operations and remote 
resources (printers and other devices). The Win32 APIs are used for programming 
applications. 

●     Multiple Provider Router (MPR): The MPR routes all network operations for 
Windows 95, as well as implementing network functions common to all network 
types. Win32 APIs communicate directory with the MPR, although some can be 
routed straight through. The MPR is a 32-bit protected mode DLL. 

●     Network Provider: The network provider implements the network service 
provider interface. Only the MPR can communicate with the network provider. 
The network provider is a 32-bit protected mode DLL. 

●     IFS Manager: The IFS Manager routes filesystem requests to the proper 
filesystem driver (FSD). The IFS Manager can be called directly by network 
providers. 

●     Network Filesystem Driver (FSD): The FSD implements the particular remote 
filesystem characteristics. The FSD can be used by the IFS Manager when the 
filesystem of the local and remote machines match. The FSD is a 32-bit protected 
mode VxD (virtual device driver). 

●     Network Transport: The network transport is a VxD that implements the device-
specific network transport protocol. Multiple network transports can be active 
at a time. The network FSD interfaces with the network transport, usually with 
a one-to-one mapping, although that is not necessarily the case. 

●     Network Driver Interface Specification (NDIS): A vendor-independent 
software specification that defines interactions between the network transport 
and device driver. Windows 95 supports both 32-bit and 16-bit NDIS versions. 

●     Network Adapter Driver: The network adapter driver VxD controls the actual 
network hardware device. NDIS communicates with the driver, which sends 
packets over the network. Windows 95 uses Media Access Control (MAC) drivers. 
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One of the key features of Windows 95 is the inclusion of support for multiple 
concurrent protocols. The default protocol is NetWare's IPX/SPX. Also included are 
NetBIOS and NetBEUI drivers, and a complete 32-bit VxD for TCP/IP. All these drivers 
are plug-and-play enabled, allowing dynamic loading and unloading. 

Windows 95's support for multiple protocols is achieved through the Network Driver 
Interface Specification (NDIS), which is a superset of the NDIS used in Windows for 
Workgroups and Windows NT. The NDIS 3.1 driver has three parts: the protocol itself 
(which can be implemented by third-party vendors) and protocol manager, the MAC or 
mini-port, and the mini-port wrapper. The NDIS protocol manager loads and unloads 
protocols as needed. 

The version of NDIS included with Windows 95 adds plug-and-play enhancements and 
new mini-drivers. The plug-and-play capability is added to the protocol manager and the 
Media Access Control (MAC) layer, letting network drivers load and unload 
dynamically. The mini-driver (which is compatible with the mini-driver models used in 
Windows NT 3.5) decreases the amount of code that must be written to support a 
network adapter. 

Windows 95 enables support for many network servers concurrently. This is an 
improvement over Windows for Workgroups 3.11, which enabled only its own network 
and one additional network. The server support of Windows 95 is provided by the 
Network Provider Interface (NPI). Using multiple network protocols at the same time, 
you can set up a Windows 95 machine to use TCP/IP for UNIX networks, and NetBEUI or 
IPX/SPX for local PC networks, if you want. Alternatively, as you see on Day 10, 
"Setting Up a Sample TCP/IP Network: DOS and Windows Clients," you can set Windows 
95 to be a pure TCP/IP-based machine. 

Optional TCP/IP Services

TCP/IP networks offer a number of optional services that users and applications can use. 
All these optional services have strict definitions for their protocols. These optional 
services and their assigned port numbers are shown in Table 8.1. 

Table 8.1. Optional TCP/IP services.

Service Port Description 

Active Users 11 Returns the names of all users on the remote system 



Character Generator 19 Returns all printable ASCII characters 

Daytime 13 
Returns the date and time, day of the week, and month of 
the year 

Discard 9 Discards all received messages 

Echo 7 Returns any messages 

Quote of the Day 17 Returns a quotation 

Time 37 Returns the time since January 1, 1900 (in seconds) 

Active Users

The Active Users service returns a message to the originating user that contains a list 
of all users currently active on the remote machine. The behavior of the TCP and UDP 
versions is the same. When requested, the Active Users service monitors port 11 and, upon 
establishment of a connection, responds with a list of the currently active users and 
then closes the port. UDP sends a datagram, and TCP uses the connection itself. 

Character Generator

The Character Generator service is designed to send a set of ASCII characters. Upon 
receipt of a datagram (the contents of which are ignored), the Character Generator 
service returns a list of all printable ASCII characters. The behavior of the TCP and 
UDP versions of the Character Generator are slightly different. 

The TCP Character Generator monitors port 19, and upon connection ignores all input 
and sends a stream of characters back until the connection is broken. The order of 
characters is fixed. The UDP Character Generator service monitors port 19 for an 
incoming datagram (remember, UDP doesn't create connections) and responds with a 
datagram containing a random number of characters. Up to 512 characters can be sent. 

Although this service might seem useless, it does have diagnostic purposes. It can ensure 
that a network can transfer all 95 printable ASCII characters properly, and it can also 
be used to test printers for their capability to print all the characters. 



Daytime

The Daytime service returns a message with the current date and time. The format it 
uses is the day of the week, month of the year, day of the month, time, and the year. Time 
is specified in a HH:MM:SS format. Each field is separated by spaces to enable parsing of 
the contents. 

Both TCP and UDP versions monitor port 13 and, upon receipt of a datagram, return the 
message. The Daytime service can be used for several purposes, including setting system 
calendars and clocks to minimize variations. It also can be used by applications. 

Discard

The Discard service simply discards everything it receives. TCP waits for a connection on 
port 9, whereas UDP receives datagrams through that port. Anything incoming is 
ignored. No responses are sent. 

The Discard service might seem pointless, but it can be useful for routing test messages 
during system setup and configuration. It can also be used by applications in place of a 
discard service of the operating system (such as /dev/null in UNIX). 

Echo

The Echo service returns whatever it receives. It is called through port 7. With TCP, it 
simply returns whatever data comes down the connection, whereas UDP returns an 
identical datagram (except for the source and destination addresses). The echoes 
continue until the port connection is broken or no datagrams are received. 

The Echo service provides very good diagnostics about the proper functioning of the 
network and the protocols themselves. The reliability of transmissions can be tested 
this way, too. Turnaround time from sending to receiving the echo provides useful 
measurements of response times and latency within the network. 

Quote of the Day



The Quote of the Day service does as its name implies. It returns a quotation from a file 
of quotes, randomly selecting one a day when a request arrives on port 17. If a source 
file of quotations is not available, the service fails. 

Time

The Time service returns the number of seconds that have elapsed since January 1, 1990. 
Port 37 is used to listed for a request (TCP) or receive an incoming datagram (UDP). 
When a request is received, the time is sent as a 32-bit binary number. It is up to the 
receiving application to convert the number to a useful figure. 

The Time service is often used for synchronizing network machines or for setting clocks 
within an application. 

Using the Optional Services

As already mentioned, the optional services can be accessed from an application. Users 
can directly access their service of choice (assuming it is supported) by using Telnet. A 
simple example is shown here: 

$ telnet merlin 7

Trying...

Connected to merlin.tpci.com

Escape character is '^T'.

This is a message

This is a message

Isn't this exciting?

Isn't this exciting?

<Ctrl+T>



$ telnet merlin 13

Trying...

Connected to merlin.tpci.com

Escape character is '^T'.

Tues Jun 21 10:16:45 1994

Connection closed.

$ telnet merlin 19

!"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[[\]^_abcdefg

"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[[\]^_abcdefgh

#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[[\]^_abcdefghi

$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[[\]^_abcdefghij

%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[[\]^_abcdefghijk

&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[[\]^_abcdefghijkl

'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[[\]^_abcdefghijklm

<Ctrl+T>

$

In this example, a connection to port 7 starts an Echo session. Everything typed by the 
user is echoed back immediately, unchanged. Then a connection to port 13 provides the 
Daytime service, showing the current date and time. The connection is broken by the 
service once the data is sent. Finally, the Character Generator is started. Both the 
Echo and Character Generator services were terminated with the Telnet break 
sequence of Ctrl+T. 

Summary



I covered a lot of material in this chapter, mostly about the way TCP/IP can interact 
with other networking systems and protocols. By combining TCP/IP with existing 
networks, the advantages of both can be gained, as well as offering compatibility with a 
wide range of TCP-based devices. 

I have also looked at several protocols that round out the TCP/IP family. These are 
mostly basic services, but they are essential to the proper operation of a TCP/IP-based 
network. 

Q&A

What is the role of the Media Access Control (MAC) layer in a network 
architecture? 

The MAC layer handles traffic for the network, including collisions and timers. The 
MAC is independent of the network's physical medium, but its exact role and 
implementation depend on the network protocols. 

What is the difference between LLC Type 1 and LLC Type 2? 

Logical Link Control (LLC) Type 1 is a simpler form that supports unnumbered 
information, designed for TCP. LLC Type 2 is for UDP and offers message integrity 
functionality. 

What is XNS? 

XNS is the Xerox Network System, a networking design that Xerox released to the 
public domain. Because XNS is essentially free, it has gained a lot of support. XNS 
supports Ethernet. 

What is ISDN? 

The Integrated Services Digital Network is a packet-switched high-speed network that 
supports broadband (many channel) communications. 

Why is a simple network protocol like the Character Generator supported? 

As simple as it may be, the Character Generator protocol (and many others like it) is 



used for basic tasks and queries that would require much more complex coding and 
operations when performed as part of a larger protocol. The Character Generator 
protocol is useful for testing communications. It is small, fast, easy to implement, and 
easy to understand. 

Quiz

1.  What components make up a Medium Attachment Unit (MAU) and what are their 
roles? 

2.  What is FDDI? Why is it popular? 

3.  What is the role of the Discard service? 

4.  The Time protocol is often used by network devices. What is its role? 

5.  Does the presence of a second network protocol (like IPX) affect the basic TCP/IP 
protocol suite's operations? 
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Setting Up a Sample TCP/IP Network: 

Servers

Over the past eight days I have looked at several aspects of the TCP/IP protocol family. 
Now it's time to look at how you can actually set up TCP/IP on a network. This chapter 
explains how the servers for a TCP/IP network are configured, and the next chapter 
examines client machines. In both chapters, I try to cover a wide range of machines and 
operating systems. 

In this chapter I look at how to set up four different types of servers: a Santa Cruz 
Operation (SCO) OpenServer 5 machine, a Linux machine, a Windows NT machine, and a 
Sun SPARCstation 5. All four servers are connected to the sample network, and any of 



them can be accessed by a client machine or other servers. Don't be too concerned if I am 
not going to use your particular version of UNIX, because most of the details of TCP/IP 
configuration are either identical or very similar across all UNIX versions. Usually all 
that changes is the directory name for some of the configuration files. 

As you know from earlier in this book, UNIX and TCP/IP are intertwined closely because 
the original implementations of TCP/IP were for UNIX systems. TCP/IP was developed for 
the BSD UNIX version that originated at the University of California at Berkeley, and 
much of the language of TCP/IP is hooked into the BSD versions. Most UNIX systems have 
moved away from BSD UNIX and have embraced System V Release 4, originally developed 
at AT&T and now owned by the Open Software Foundation. SCO UNIX and SunSoft 
Solaris 2.4, both of which I use in this chapter, use the System V Release 4 version of 
UNIX, which provides some backward compatibility with BSD UNIX. 

In the next chapter I expand the coverage of TCP/IP on the sample network by looking 
at client implementations. I look specifically at how you can implement TCP/IP for DOS, 
Windows 3.x, and Windows 95. Any of the operating systems mentioned in this chapter 
can act as clients to any of the servers, as well. 

Most of the material covered in this chapter is familiar if you have read through the 
book in order. Some of it is summarized and shown again for quick reference, as well as 
for those who read the chapters out of order. If you get lost, you can consult the index 
for a pointer to more information. 

The Sample Network

For this chapter I designed a dedicated TCP/IP network to show the steps you must 
follow to set up, configure, and test a TCP/IP implementation. The sample network relies 
on several servers, although many networks have only one. Also, I use several 
different types of servers to show you how they can be configured, whereas most real 
networks are not this diverse. All the machines are connected over an Ethernet 
network. In all, the sample network has four servers and three clients. 

Each of the seven machines on the network has its own name and IP address. For this 
sample network, the IP address mask has been randomly chosen as 147.120. The names of 
the machines have been chosen from my pets, although any unique name would do, of 
course. The sample network configuration is shown in Figure 9.1. Bear in mind that this 
network is constructed to show the different types of operating systems I examine in 
today's and tomorrow's material; it is unlikely that a real network would have such an 
odd mix of servers and clients. 

Figure 9.1. The sample TCP/IP network. 
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The physical setup of the network is undertaken first. It involves installing a network 
interface card in each machine (except the SPARCstation, which has the network card 
as part of the motherboard). On each system you must ensure that any jumpers for 
interrupt vectors and memory I/O addresses do not conflict with any other card on that 
system. (Some of the cards are software programmable; some are set by jumpers or DIP 
switches.) All the boards used in this system are from different manufacturers to show 
the independent nature of the TCP/IP network. 

Cable must be run between all the machines, connecting the network interface cards 
together. In the case of Ethernet, the cables must be properly terminated. The sample 
network uses thin Ethernet, which closely resembles television coaxial cable. BNC Thin 
Ethernet connectors resemble a T, with cables attached to both ends of the T and the 
stem connected to the network card. Two of the machines form the ends of the cable 
and require a terminating resistor as part of their T. The SPARCstation normally uses 
an RJ45 connector (which looks like a wide telephone connector, so I used a transceiver 
to convert it to BNC). 

To test the physical network, it is easiest to wait until a couple of machines have had 
their basic software configuration completed. All the machines on the network do not 
have to be active, as long as the network cable is contiguous from end to end and each 
BNC connector is attached to a network card to provide electrical termination. If 
problems are found when the network is tested, the physical network is the first item to 
check. Some network monitoring devices can supply integrity information prior to 
installing the network, but these devices are not usually available to system 
administrators who are just beginning their installation, or who have a small number of 
machines to maintain (primarily because the network testers tend to be expensive). 

Configuring TCP/IP Software

This section follows through the configuration of the TCP/IP software. The discussion 
applies equally to the UNIX, Windows, and DOS machines on the sample network (as it 
would to any other type of machine, such as a Macintosh). Filenames can change with 
different operating systems, but the general approach remains valid. 

Most operating systems and TCP/IP software packages provide several utilities, including 
menu-driven scripts that help automate the installation process of the TCP/IP 
applications. Some operating systems (notably older UNIX systems) still require manual 
configuration of several files using a text editor. To configure TCP/IP software 
properly, you must know several pieces of information before you start. The necessary 
information you need for each machine on the network follows: 



●     Domain name: The name the entire network will use. 

●     System name: The unique name of each local machine. 

●     IP address: The full address of each machine. 

●     Driver type: Each interface to the network must be associated with a device 
driver, instructing the operating system how to talk to the device. 

●     Broadcast address: The address used for network-wide broadcasts. 

●     Netmask: The network mask that uniquely identifies the local network. 

●     Hardware network card configuration information: The interrupt vector and 
memory address of the network card. 

The system domain name is necessary if the network is to be connected to other machines 
outside the local network. Domain names can be invented by the system administrator. 
If, however, the network is to interface with Internet or one of its service providers, 
the domain name should be approved by the Internet Network Information Center 
(InterNIC). Creating and registering a new domain is as simple as filling out a form (and 
recently, paying a small administration fee). Domain names usually reflect the company 
name, with the extension identifying the type of organization. The sample network uses 
the name tpci.com. 

As seen earlier in this book, the machine name is used for symbolic naming of a machine 
instead of forcing the full IP address to be specified. The system name must be unique on 
the local network. Other networks might have machines with the same name, but their 
network masks are different, so there is no possible confusion during packet routing. In 
most cases, system names are composed of eight characters (or less) and are usually all 
lowercase characters (in keeping with UNIX tradition for lowercase). The system name 
can be a mix of characters and numbers. Larger organizations tend to number their 
machines, and small companies give their machines more familiar names. 

The device driver instructs the operating system how to communicate with the network 
interface (usually either a network card or a serial port). Each interface has its own 
specific device driver. Most operating systems have device drivers included in their 
distribution software, although some require software supplied with the network card. 
Generic drivers are available for most network cards on bulletin board systems. 

With most operating systems, there are limits to the number of similar devices that are 
supported. SCO UNIX, for example, enables up to four Ethernet cards, two Token Ring 
adapters, four Serial Line Internet Protocol (SLIP) lines, and four Point-to-Point 
Protocol (PPP) lines. These limits should be enough for a machine on any network! 



The network card configuration must be known in order to install the device driver 
properly. Network cards usually have several configuration settings, depending on the 
system for which they are designed. For the PC-based machines in the sample network, 
each card must have a unique interrupt vector (called an IRQ) and a unique I/O memory 
address. IRQ and address settings on many of the newer network boards are software-
configurable, making the installation and configuration much easier. 

Most network cards come with default settings that might conflict with other cards in 
the system. Users must carefully check for conflicts, resorting to a diagnostic program 
if available. UNIX users have several utilities available, depending on the operating 
system. SCO UNIX and most System V Release 4 operating systems have the utility 
hwconfig, which shows the current hardware configuration. The following example 
shows the hwconfig output and the output from the command with the -h option to 
provide long formatting with headers (making it is easier to read): 

$ hwconfig

name=fpu vec=13 dma=- type=80387

name=serial base=0x3F8 offset=0x7 vec=4 dma=- unit=0 
type=Standard nports=1

name=serial base=0x2F8 offset=0x7 vec=3 dma=- unit=1 
type=Standard nports=1

name=floppy base=0x3F2 offset=0x5 vec=6 dma=2 unit=0 
type=96ds15

name=floppy vec=- dma=- unit=1 type=135ds18

name=console vec=- dma=- unit=vga type=0 12 screens=68k

name=adapter base=0x2C00 offset=0xFF vec=11 dma=- type=arad 
ha=0 id=7 fts=st

name=nat base=0x300 offset=0x20 vec=7 dma=- type=NE2000 
addr=00:00:6e:24:1e:3e

name=tape vec=- dma=- type=S ha=0 id=4 lun=0 ht=arad

name=disk vec=- dma=- type=S ha=0 id=0 lun=0 ht=arad 
fts=stdb

name=Sdsk vec=- dma=- cyls=1002 hds=64 secs=32

$



$ hwconfig -h

device          address    vec  dma  comment

======          =======    ===  ===  =======

fpu                -        13   -   type=80387

serial        0x3f8-0x3ff    4   -   unit=0 type=Standard 
nports=1

serial        0x2f8-0x2ff    3   -   unit=1 type=Standard 
nports=1

floppy        0x3f2-0x3f7    6   2   unit=0 type=96ds15

floppy             -         -   -   unit=1 type=135ds18

console            -         -   -   unit=vga type=0 12 
screens=68k

adapter      0x2c00-0x2cff  11   -   type=arad ha=0 id=7 
fts=st

nat           0x300-0x320    7   -   type=NE2000 
addr=00:00:6e:24:1e:3e

tape               -         -   -   type=S ha=0 id=4 lun=0 
ht=arad

disk               -         -   -   type=S ha=0 id=0 lun=0 
ht=arad fts=stdb

Sdsk               -         -   -   cyls=1002 hds=64 
secs=32

This output is from the SCO UNIX servers set up for the sample network. It has the 
network Ethernet card already configured as device nat, which uses IRQ 7 (shown 
under the vec or interrupt vector column). The nat line also shows the memory address 
as 300–320 (hexadecimal) and the device driver as NE2000 (a Novell NetWare-compatible 
driver). The address and vec columns show no conflicts between the settings used for 
the Ethernet card and other devices on the system. (The adapter entry is for a high-
speed SCSI-2 card, which controls both the tape and the Sdsk device, the primary SCSI 
hard drive. All other entries should be self-explanatory.) 

DOS users can use the Microsoft Diagnostic utility, MSD.EXE, or one of several third-
party tools such as Central Point PC Tools or The Norton Utilities to display IRQ 
vectors and memory addresses in use by the system. Some software even indicates which 



vectors and addresses are available for use. 

There is no need to have the same IRQ and memory address for each card on the network, 
because the network itself doesn't care about these settings. The IRQ and memory 
addresses are required for the machine to communicate with the network interface card 
only. The sample network used a different IRQ and memory address for each machine. 

IRQ and memory addresses are usually set on the network interface card itself using 
either jumpers on pins or a DIP-switch block. The documentation accompanying the card 
should provide all the information necessary for setting these values. Some recently 
introduced network interface cards can be configured through software, enabling the 
settings to be changed without removing the card from the system. This can be very 
handy when a user is unsure of the best settings for the card. 

The IP address is a 32-bit number that must be unique for each machine. If the network is 
to be connected to the Internet, the IP address must be assigned by the NIC (it is usually 
given to you when you register your domain name). Even if no access to the Internet is 
expected, arbitrarily assigning an IP address can cause problems when messages are 
passed with other networks. If the network is not connected to the outside world, a 
system administrator can ignore the NIC's numbering system and adopt any IP address. It 
is worthwhile, however, to consider future expansion and connection to other 
networks. 

As you might recall, the NIC has four classes of IP addresses in use depending on the size 
of the network. Each class has some addresses that are restricted. These are shown in 
Table 9.1. Most networks are Class B, although a few large corporations require Class 
A networks. 

Table 9.1. The NIC IP address classes.

Class Network Mask Bytes Number of Hosts per Network Valid Addresses 

A 1 16,777,216 1.0.0.1 to 126.255.255.254 

B 2 65,534 128.0.0.1 to 191.255.255.254 

C 3 254 224.0.0.0 to 255.255.255.254 

D reserved 

The network mask is the IP address stripped of its network identifiers, leaving only the 
local machine address. For a Class A network, this strips one byte, whereas a Class B 
network strips two bytes (leaving two). The small Class C network strips three bytes as 
the network mask, leaving one byte to identify the local machine (hence the limit of 254 
machines on the network). The sample network is configured as a Class B machine with 



the randomly chosen IP address network mask of 147.120 (not NIC-assigned). 

The broadcast address identifies packets that are to be sent to all machines on the local 
network. Because a network card usually ignores any incoming packets that don't have 
its specific IP address in them, a special broadcast address can be set that the card can 
intercept in addition to locally destined messages. The broadcast address has the host 
portion (the local machine identifiers) set to either all 0s or all 1s, depending on the 
convention followed. For convenience, the broadcast address's network mask is usually 
the same as the local network mask. 

Broadcast addresses might seem simple because there are only two possible settings. Such 
addresses, however, commonly cause problems because conflicting settings are used on a 
network. BSD UNIX used the convention of all 0s for releases 4.1 and 4.2, whereas 
4.3BSD and SVR4 (System V Release 4) UNIX moved to all 1s for the broadcast address. 
The Internet standard specifies all 1s as the broadcast address. If problems are 
encountered on the network with broadcasts, check all the configurations to ensure 
they are using the same setting. The sample network uses an all 1s mask for its broadcast 
address. 

The steps followed for configuring TCP/IP are straightforward, generally following 
the information required for each machine. The configuration steps are as follows: 

●     Link drivers: TCP/IP must be linked to the operating system's kernel or loaded 
during the boot stage to enable TCP/IP. 

●     Add host information: Provide a list of all machines (hosts) on the network 
(used for name resolution). 

●     Establish routing tables: Provide the information for routing packets properly 
if name resolution isn't sufficient. 

●     Set user access: Configure the system to enable access in and out of the 
network, as well as establishing permissions. 

●     Remote device access: Configure the system for access to remote printers, 
scanners, CD-ROM carousels, and other shared network devices. 

●     Configure the name domain server: If using a distributed address lookup system 
such as Berkeley Internet Name Domain Server (BIND) or NIS, complete the name 
server files. (This step is necessary only if you are using BIND or a similar service.) 

●     Tune system for performance: Because a system running TCP/IP has different 
behavior than one without TCP/IP, some system tuning is usually required. 

●     Configure NFS: If the Network File System (NFS) is to be used, configure both the 
file system and the user access. 



●     Anonymous FTP: If the system is to enable anonymous FTP access, configure the 
system and public directories for this service. 

You will use these steps (not necessarily in the sequence given) as the individual 
machines on the network are configured. The processes are different with each 
operating system, but the overall approach remains the same. 

UNIX TCP/IP Configuration

Most UNIX TCP/IP operating systems rely on several files for configuration. These are 
summarized in Table 9.2. Remember that filenames can change with different 
implementations of the UNIX operating system, but the configuration information is 
consistent. I look at each of these files in more detail when I look at specific operating 
systems later today. These files apply only to UNIX usually; Windows NT, for example, 
uses a different set of tables. 

Table 9.2. TCP/IP UNIX configuration files.

File Description 

/etc/hosts Host names 

/etc/networks Network names 

/etc/services List of known services 

/etc/protocols Supported protocols 

/etc/hosts.equiv List of trusted hosts 

/etc/ftpusers List of unwelcome FTP users 

/etc/inetd.conf List of servers started by inetd 

For the sample network, modifying these files on any of the three UNIX servers (SCO 
UNIX, Linux, and SPARCstation) is quite easy. An ASCII text editor is all that is 
required. Verifying the contents is usually quite simple, too, because the tables on one 
machine are very similar to those on other machines, except for a few entries. 

Configuring SCO UNIX



SCO UNIX and SCO OpenServer 5 include several configuration utilities to help provide 
information for TCP/IP and to link the driver into the kernel correctly. This does not 
eliminate the need to edit the many configuration files manually and supply 
information about the other machines on the network. Most of the information in this 
section, although specific to SCO UNIX, is generally applicable to most UNIX operating 
systems, especially SVR4-compliant versions. 

Most UNIX-based networks have a main server machine that starts the network 
processes. This machine is sometimes called a super server, because any machine that runs 
network processes and accepts requests from other machines is a server. UNIX uses the 
process inetd (Internet daemon) as the master server for all network processes that are 
to be activated (usually contained in a single file called inetd.conf.) Hardware 
configuration requires linking information about the network card and protocol to the 
operating system kernel. The configuration is sometimes called a chain. The process is 
usually automated by a script file, requiring users to provide the interrupt vector 
number, the I/O memory address, and the type of card. The device driver for that 
network card is then rebuilt into the kernel so the driver is active whenever the system 
boots. 

On SCO UNIX systems, a utility called netconfig is used, prompting the user for the 
three pieces of information (IRQ, address, and card type) and then rebuilding the kernel. 
Under SCO OpenServer 5, you can perform the same tasks through a GUI-driven utility 
that performs the same tasks. This process is repeated for each network card on the 
machine. (The sample network has only one card in each machine, which is the most 
common configuration.) When started, the SCO UNIX netconfig program presents you 
with this screen: 

$ netconfig

Currently configured chains:

  1. nfs->sco_tcp

     nfs       SCO NFS Runtime System for SCO Unix

     sco_tcp   SCO TCP/IP for UNIX

  2. sco_tcp->lo0

     sco_tcp   SCO TCP/IP for UNIX

     lo0       SCO TCP/IP Loopback driver

Available options:



  1. Add a chain

  2. Remove a chain

  3. Reconfigure an element in a chain

  q. Quit

Select option: Please enter a value between 1 and 3 ('q' to 
quit): 

Because a TCP/IP device driver is being added, option 1 (Add a chain) is selected. Some 
users confuse the first configured chain in the list with a TCP/IP driver for the network 
and attempt to reconfigure it. The first driver listed in the previous output is a default 
value for NFS and should be left alone. It has nothing to do with the addition of a 
TCP/IP network card. The second chain listed in the configuration is the loopback 
driver, which should be created automatically for all SCO systems when the operating 
system software is installed. 

After indicating that a new chain is to be added, the system asks for the type of chain: 

Num    Name       Description

  1.   lmxc       SCO LAN Manager Client

  2.   nfs        SCO NFS Runtime System for SCO UNIX

  3.   sco_ipx    SCO IPX/SPX for UNIX

  4.   sco_tcp    SCO TCP/IP for UNIX

Select top level of chain to Add or 'q' to quit:

Option 4 is chosen because you are installing TCP/IP. LAN Manager and IPX/SPX are used 
for integration with DOS-based networks. The NFS Runtime System is added later if NFS 
is to be used on the network. I look at configuring NFS in more detail on Day 12, "NFS 
and NIS." 

The netconfig utility then presents a list of several dozen network interface cards for 
which the system has default values. If the card installed in the system is shown, the 
entry for the card is chosen. If the card is not on the list, a compatible entry must be 
found. This sometimes requires digging through the network interface card's 
documentation for emulation or compatible values, or contacting the manufacturer. 
Drivers are usually available for Ethernet cards. 



The system then prompts for the IRQ the card is set for, followed by the memory address. 
After these are entered, the operating system creates the necessary entries in its 
internal configuration files to include the device driver for the network card. As a 
final step, the system asks if the user wants to rebuild and relink the kernel. This must 
be done if the new drivers are to be effective. After a system reboot, the drivers are 
active and can be tested with a ping command. 

You can ping the localhost first, followed by the IP address you have assigned for the 
SCO machine. This does not test the network connection, because the operating system 
doesn't bother using the network card when pinging itself. The test does, however, 
verify that the IP address is set properly and that the TCP/IP software is embedded in 
the operating system kernel. An example of this type of ping testing looks like this: 

# ping -c5 localhost

PING localhost (127.0.0.1): 56 data bytes

64 bytes from localhost (127.0.0.1): icmp_seq=0 ttl=64 
time=10 ms

64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 
time=0 ms

64 bytes from localhost (127.0.0.1): icmp_seq=2 ttl=64 
time=0 ms

64 bytes from localhost (127.0.0.1): icmp_seq=3 ttl=64 
time=0 ms

64 bytes from localhost (127.0.0.1): icmp_seq=4 ttl=64 
time=0 ms

--- localhost ping statistics ---

5 packets transmitted, 5 packets received, 0% packet loss

round-trip min/avg/max = 0/2/10 ms

# ping -c5 147.120.0.1

PING 147.120.0.1 (147.120.0.1): 56 data bytes

64 bytes from merlin (147.120.0.1): icmp_seq=0 ttl=64 time=0 
ms

64 bytes from merlin (147.120.0.1): icmp_seq=1 ttl=64 time=0 
ms



64 bytes from merlin (147.120.0.1): icmp_seq=2 ttl=64 time=0 
ms

64 bytes from merlin (147.120.0.1): icmp_seq=3 ttl=64 time=0 
ms

64 bytes from merlin (147.120.0.1): icmp_seq=4 ttl=64 time=0 
ms

--- 147.120.0.1 ping statistics ---

5 packets transmitted, 5 packets received, 0% packet loss

round-trip min/avg/max = 0/0/0 ms

In the preceding example, issued on the server merlin with IP address 147.120.0.1, I used 
the ping command with the -c option to specify how many packets to send. As you can see, 
both the localhost and IP address responded properly, indicating that the TCP/IP 
software is properly loaded and the IP address is recognized. 

As you saw earlier today, UNIX TCP/IP networking software relies on several files for 
configuration. These were summarized in Table 9.2. You can look at each of these files 
now with respect to the SCO UNIX server on the sample network. 

The /etc/hosts file contains the names of the other machines on the network and their 
network addresses. The file looks like this: 

#      @(#)hosts    1.2 Lachman System V STREAMS TCP  source

#      SCCS IDENTIFICATION

127.0.0.1           localhost tpci

147.120.0.1         merlin merlin.tpci.com

147.120.0.2         freya freya.tpci.com

147.120.0.3         brutus brutus.tpci.com

147.120.0.4         megan megan.tpci.com_

147.120.0.10        whitney whitney.tpci.com

147.120.0.11        sinbad sinbad.tpci.com

147.120.0.12        pepper pepper.tpci.com



Each line contains the local machine name and its full name with the domain so that 
either version is recognized by the operating system. As new machines are added to the 
network, new lines are added to the file. The local machine has two entries in the file: 
one for the local name and one for localhost. 

The /etc/networks file holds a list of network names and their addresses. This is an 
optional file as far as most TCP/IP installations are concerned, and most system 
administrators use it only when the users need it. The /etc/networks file lets you name 
networks in the same way as machines. The following example shows some of the SCO 
network machines as well as two networks that the local machines frequently connect 
to. Using the name maclean_net as part of a machine identifier supplied by a user is now 
possible because the operating system can resolve it to its IP address through this file. 

#      @(#)networks 1.2 Lachman System V STREAMS TCP  source

#      SCCS IDENTIFICATION

loopback       127

sco            132.147

sco-hq         132.147.128

sco-mfg        132.147.64

sco-engr       132.147.192

sco-slip       132.147.32

sco-tcplab     132.147.160

sco-odtlab     132.147.1

maclean_net    147.50.1

bnr.ca         47

On Day 6 "Telnet and FTP," you examined the /etc/services file. It includes information 
about all the TCP and UDP services supported by the system. For the sample network 
and most small networks, the default values are acceptable. These entries are changed 
only if a service is being removed from TCP/IP, such as to prevent Telnet access. The file 
looks like this: 

#      @(#)services 5.1 Lachman System V STREAMS TCP  source



#

#    System V STREAMS TCP - Release 4.0

# Network services, Internet style

#

echo            7/tcp

echo            7/udp

discard         9/tcp         sink null

discard         9/udp         sink null

systat          11/tcp        users

daytime         13/tcp

daytime         13/udp

netstat         15/tcp

qotd            17/tcp        quote

chargen         19/tcp        ttytst source

chargen         19/udp        ttytst source

ftp             21/tcp

telnet          23/tcp

smtp            25/tcp        mail

time            37/tcp        timserver

time            37/udp        timserver

rlp             39/udp        resource       # resource 
location

nameserver      42/tcp        name           # IEN 116

whois           43/tcp        nicname

domain          53/tcp        nameserver     # name-domain 
server



domain          53/udp        nameserver

mtp             57/tcp                       # deprecated

bootps          67/udp        bootps         # bootp server

bootpc          68/udp        bootpc         # bootp client

tftp            69/udp

rje             77/tcp        netrjs

finger          79/tcp

link            87/tcp        ttylink

supdup          95/tcp

hostnames       101/tcp       hostname        # usually from 
sri-nic

tsap            102/tcp       osi-tp0 tp0

#csnet-cs       105/?

pop             109/tcp       postoffice

sunrpc          111/tcp

sunrpc          111/udp

auth            113/tcp       authentication

sftp            115/tcp

uucp-path       117/tcp

nntp            119/tcp       readnews untp   # USENET News 
Transfer Protocol

ntp             123/tcp

ntp             123/udp

nb-ns           137/udp         nbns netbios-nameservice

nb-ns           137/tcp         nbns netbios-nameservice

nb-dgm          138/udp         nbdgm netbios-datagram



nb-dgm          138/tcp         nbdgm netbios-datagram

nb-ssn          139/tcp         nbssn netbios-session

snmp            161/udp

snmp-trap       162/udp

bgp             179/tcp

#

# UNIX specific services

#

exec            512/tcp

biff            512/udp         comsat

login           513/tcp

who             513/udp         whod

shell           514/tcp         cmd             # no 
passwords used

syslog          514/udp

printer         515/tcp         spooler         # line 
printer spooler

talk            517/udp

ntalk           518/udp

efs             520/tcp                         # for 
LucasFilm

route           520/udp         router routed   # 521 also

timed           525/udp         timeserver

tempo           526/tcp         newdate

courier         530/tcp         rpc

conference      531/tcp         chat

netnews         532/tcp         readnews



netwall         533/udp                         # -for 
emergency broadcasts

uucp            540/tcp         uucpd           # uucp 
daemon

remotefs        556/tcp         rfs_server rfs  # Brunhoff 
remote filesystem

pppmsg          911/tcp                         # PPP daemon

listen         1025/tcp         listener RFS 
remote_file_sharing

nterm          1026/tcp         remote_login 
network_terminal

ingreslock     1524/tcp

The /etc/hosts.equiv file controls access from other machines. The /etc/ftpusers file 
prevents unauthorized logins with specific user names. Both files are examined in more 
detail in the sections later today titled "User Equivalence" and "Anonymous FTP." 

The /etc/inetd.conf file, mentioned earlier, controls the processes started by the inetd 
daemon when the system boots. The default inetd.conf file is fine for the sample system 
and seldom requires modification. The file appears as follows: 

#      @(#)inetd.conf    5.2 Lachman System V STREAMS TCP  
source

#

#    System V STREAMS TCP - Release 4.0

#

#      SCCS IDENTIFICATION

ftp       stream    tcp  nowait    NOLUID    /etc/ftpd      
ftpd

telnet    stream    tcp  nowait    NOLUID    /etc/telnetd   
telnetd

shell     stream    tcp  nowait    NOLUID    /etc/rshd      
rshd



login     stream    tcp  nowait    NOLUID    /etc/rlogind   
rlogind

exec      stream    tcp  nowait    NOLUID    /etc/rexecd    
rexecd

finger    stream    tcp  nowait    nouser    /etc/fingerd   
fingerd

#uucp     stream    tcp  nowait    NOLUID    /etc/uucpd     
uucpd

# Enabling this allows public read files to be accessed via 
TFTP.

#tftp     dgram     udp  wait      nouser    /etc/tftpd     
tftpd

comsat    dgram     udp  wait      root      /etc/comsat    
comsat

ntalk     dgram     udp  wait      root      /etc/talkd     
talkd

#bootps   dgram     udp  wait      root      /etc/bootpd    
bootpd

echo      stream    tcp  nowait    root      internal

discard   stream    tcp  nowait    root      internal

chargen   stream    tcp  nowait    root      internal

daytime   stream    tcp  nowait    root      internal

time      stream    tcp  nowait    root      internal

echo      dgram     udp  wait      root      internal

discard   dgram     udp  wait      root      internal

chargen   dgram     udp  wait      root      internal

daytime   dgram     udp  wait      root      internal

time      dgram     udp  wait      root      internal

smtp      stream    tcp  nowait    mmdf      



/usr/mmdf/chans/smtpd smtpd /usr/mmdf/chans/smtpsrvr smtp

With the files set up as shown and the daemons properly loading, TCP/IP and UDP should 
both be active and available. Most operating systems require a reboot after any changes 
to the kernel or some configuration files, so modifications to the TCP/IP files should be 
followed by system resets. 

When the system boots, the TCP/IP daemons should be listed in the startup messages 
shown on the console. Any errors in the daemon startups are shown on the display or 
mailed to the system administrator. Usually, these error messages are cryptic but at 
least indicate the presence of a problem (which is better than you worrying about 
configuration information when the daemon is at fault). 

Configuring Linux

Linux is a public domain UNIX version that has become very popular. In this section I 
configure the SlakWare release of Linux on the sample network. Many other Linux 
versions use the same TCP/IP configuration process as SlakWare, but you should check 
your version's release notes for any changes. Linux is a combination of BSD UNIX and 
SVR4 UNIX, but most of the configuration files for TCP/IP are identical to those for 
SCO UNIX and Solaris 2.4. Before you start configuring the TCP/IP files, though, you 
need to check a few details on your Linux system. 

Most networked versions of Linux rely on the /proc filesystem, which must be created 
and mounted before networking can be configured and tested. Most Linux versions 
automatically create the /proc filesystem when the operating system is installed, so you 
shouldn't have to do anything more than make sure it is properly mounted by the 
kernel. The /proc filesystem is essentially a quick interface point for the kernel to 
obtain network information, as well maintaining important tables that are usually 
kept in the subdirectory /proc/net, which is created by the network installation 
routine. 

If the /proc filesystem is not created by your Linux kernel, you have to rebuild the 
kernel and select the /proc option. Change to the source directory (such as 
/usr/src/Linux) and run the configuration routine with this command: 

make config

When you are asked if you want the procfs support, answer yes. If you do not get asked 
about the /proc filesystem support, and the /proc directory is not created on your 



filesystem, you need to upgrade your kernel to support networking. 

You can make sure the /proc filesystem is mounted automatically on your Linux system 
by examining the startup code for the kernel. To force the /proc filesystem to be 
mounted automatically, modify the /etc/fstab file and add the mount command there. 
Check the entries in /etc/fstab to see if there is a line like this: 

none  /proc  proc  defaults

If no such line exists, you should add it to the contents of the /etc/fstab file using an 
ASCII editor. 

Another step you must take before configuring TCP/IP under Linux is to set the 
hostname. To set the hostname, use this command: 

hostname name

The name is the system name you want for your local machine. If a hostname is not 
already set, you can set the full domain name using this command: 

hostname freya.tpci.com

This sets the hostname to freya on the sample network. When you set the local 
machine's name with the hostname command, an entry is usually made in the /etc/hosts 
file. You should verify that your machine name appears in that file. 

The next step in configuring TCP/IP on your Linux machine is to make the network 
interface accessible. This is done with the ifconfig command. When run, ifconfig 
essentially makes the network layer of the kernel work with the network interface by 
giving it an IP address. When the interface is active, the kernel can send and receive 
data through the interface. 

There are several interfaces you need to set up for your Linux machine, including the 
loopback driver (if it is not already created) and the Ethernet interface. The ifconfig 
command is used for each interface in turn. The general format of the ifconfig command 
is this: 

ifconfig interface_type IP_Address



The interface_type is the interface's device driver name (such as lo for loopback and eth 
for Ethernet). The IP_Address is the IP address used by that interface. 

When the ifconfig command has been run and the interface is active, you can use the 
route command to add or remove routes in the kernel's routing table. This is needed to 
enable the local machine to find other machines. The general format of the route 
command is this: 

route add|del IP_Address

Either add or del is specified to add or remove the route from the kernel's routing table, 
and IP_Address is the remote route being affected. 

You can display the current contents of the kernel's routing table at any time by 
entering the command route all by itself on the command line. For example, if your 
system is set up with only the loopback driver, you see an output like this: 

$ route

Kernel Routing Table

Destination    Gateway   Genmask   Flags  MSS  Window  Use 
Iface

loopback         *       255.0.0.0   U    1936  0       16  
lo

The important columns are the destination name, which shows the name of the 
configured target (in this case, loopback), the mask to be used (Genmask), and the 
interface (Iface, in this case /dev/lo). You can force route to display IP addresses instead 
of symbolic names by using the -n option: 

$ route -n

Kernel Routing Table

Destination    Gateway   Genmask   Flags  MSS  Window  Use 
Iface

127.0.0.1         *      255.0.0.0   U    1936  0       16  
lo



A typical Linux network configuration includes a couple of interfaces. The loopback 
interface should exist on every machine. Once the loopback driver is configured, you 
can add the Ethernet driver for the network. You begin by installing the loopback 
driver. 

The loopback interface should exist on every machine. The loopback interface always 
has the IP address 127.0.0.1, so the /etc/hosts file should have an entry for this 
interface. The loopback driver might have been created by the kernel during software 
installation, so check the /etc/hosts file for a line similar to this: 

localhost  127.0.0.1

If the line exists, the loopback driver is in place. Make sure the line doesn't have a pound 
sign ahead of it, which would comment it out. You can also use the ifconfig utility to 
display all the information it knows about the loopback driver. Use this command: 

ifconfig lo

You should see several lines of information about the loopback driver. If you get an 
error message, the loopback driver does not exist. 

If the loopback interface is not in the /etc/hosts file, you need to create it with the 
ifconfig command. The command 

ifconfig lo 127.0.0.1

creates the necessary line in /etc/hosts. 

Next you should add the loopback driver to the kernel routing tables with one of these 
two commands: 

route add 127.0.0.1

or 

route add localhost



It doesn't matter which command you use because they both refer to the same thing. The 
command essentially tells the kernel that it can use the route to address 127.0.0.1 or to 
the name localhost. 

As a quick check that all is correct with the loopback driver, you can use the ping 
command to check the routing. If you issue either of these two commands: 

ping localhost

or 

ping 127.0.0.1

you should see output like this: 

PING localhost: 56 data bytes

64 bytes from 127.0.0.1: icmp_seq=0.  ttl=255 time=1 ms

64 bytes from 127.0.0.1: icmp_seq=1.  ttl=255 time=1 ms

64 bytes from 127.0.0.1: icmp_seq=2.  ttl=255 time=1 ms

64 bytes from 127.0.0.1: icmp_seq=3.  ttl=255 time=1 ms

64 bytes from 127.0.0.1: icmp_seq=4.  ttl=255 time=1 ms

64 bytes from 127.0.0.1: icmp_seq=5.  ttl=255 time=1 ms

64 bytes from 127.0.0.1: icmp_seq=6.  ttl=255 time=1 ms

64 bytes from 127.0.0.1: icmp_seq=7.  ttl=255 time=1 ms

^C

--- localhost PING Statistics ---

7 packets transmitted, 7 packets received, 0% packet loss

round-trip (ms) min/avg/max = 1/1/1

The ping command's progress was interrupted by the user by issuing a Ctrl+C after seven 



transmissions. You can let as many transmissions as you want go by. If you get no replies 
from the ping command, then the address 127.0.0.1 or the name localhost wasn't 
recognized and you should check the configuration files and route entry again. 

If the configuration files look correct and the route command was accepted properly, 
but the ping command still doesn't produce the proper results, you have a more serious 
problem. In some cases, the network kernel is not properly configured and the entire 
process must be conducted again. Sometimes a mismatch in versions of kernel drivers and 
network utilities can cause hang-ups with the ping routine, as well. 

Next, you need to add the Ethernet drivers to the kernel. You can perform the same 
configuration process with the Ethernet driver. To begin, you set up the Ethernet 
interface using ifconfig. To make the interface active, use the ifconfig command with 
the Ethernet device name and your local IP address. For example, use the command 

ifconfig eth0 147.120.0.2

to set up the local machine with the IP address 147.120.0.2. The interface is to the 
Ethernet device /dev/eth0. You don't have to specify the network mask with the ifconfig 
command because it deduces the proper value from the IP address entered. If you want to 
provide the network mask value explicitly, append it to the command line with the 
keyword netmask: 

ifconfig eth0 147.120.0.2 netmask 255.255.255.0

You can then check the interface with the ifconfig command using the interface name: 

$ ifconfig eth0

eth0         Link encap 10Mps: Ethernet Hwaddr

          inet addr 147.123.20.1 Bcast 147.123.1.255 Mask 
255.255.255.0

          UP BROADCAST RUNNING  MTU 1500 Metric 1

          X packets:0 errors:0 dropped:0 overruns:0

          TX packets:0 errors:0 dropped:0 overruns:0

You might have noticed in the output from the command that the broadcast address was 
set based on the local machine's IP address. This is used by TCP/IP to access all machines 



on the local area network at once. The Message Transfer Unit (MTU) size is usually set 
to the maximum value of 1500 supported by Ethernet networks. 

Next, you need to add an entry to the kernel routing tables that lets the kernel know 
about the local machine's network address. That lets it send data to other machines on 
the same network. The IP address that is used with the route command to do this is not 
your local machine's IP address, but that of the network as a whole without the local 
identifier. To set the entire local area network at once, the -net option of the route 
command is used. In the case of the IP addresses shown previously, the command would be 
as follows: 

route add -net 147.120.0

This adds all the machines on the network identified by the network address 147.120.0 to 
the kernel's list of accessible machines. If you didn't do it this way, you would have to 
manually enter the IP address of each machine on the network. An alternative method 
is to use the /etc/networks file, which can contain a list of network names and their IP 
addresses. If you have an entry in the /etc/networks file for a network called 
maclean_net, you could add the entire network to the routing table with this 
command: 

route add maclean_net

Once the route has been added to the kernel routing tables, you can try the Ethernet 
interface out by pinging another machine, such as the SCO server you configured 
earlier. 

Now you can configure the files used by TCP/IP, as you did for the SCO UNIX system 
configured earlier. Because many of the details of these files are identical to those 
shown in the SCO UNIX section, I skip a lot of the details here. 

The /etc/hosts file is used to hold the network addresses and symbolic names, as well as 
the loopback driver. The loopback connection address is usually listed as the machine 
name loopback or localhost. The /etc/hosts file consists of the network address in one 
column and the symbolic name in another. Although the network addresses can be 
specified in decimal, octal, or hexadecimal format, decimal is the most commonly used 
form (and use of the others can be downright confusing). You can specify more than one 
symbolic name on a line by separating the names with white space characters (spaces or 
tabs). The Linux server /etc/hosts file on the sample network looks like this (remember 
that the Linux server is called freya and has an IP address of 147.120.0.2): 



# network host addresses

127.0.0.1           localhost tpci

147.120.0.2         freya freya.tpci.com

147.120.0.1         merlin merlin.tpci.com

147.120.0.3         brutus brutus.tpci.com

147.120.0.4         megan megan.tpci.com_

147.120.0.10        whitney whitney.tpci.com

147.120.0.11        sinbad sinbad.tpci.com

147.120.0.12        pepper pepper.tpci.com

This file is essentially identical to that of the SCO UNIX server, because all the 
machines on the network have the same names and addresses. Because the localhost 
name is set to freya, the Linux server knows which entry in the file refers to itself. 

The file /etc/protocols identifies all the transport protocols available on the Linux 
server and gives their respective protocol numbers. All systems have this file, although 
some entries might be commented out to prevent unwanted intrusion or abuse. With 
Linux the /etc/protocols file is not usually modified by the administrator. Instead, the 
file is maintained by the networking software and updated automatically as part of 
installation procedures. The file contains the protocol name, its number, and any alias 
that can be used for that protocol. The /etc/protocols file from the Linux server is 
shown here: 

# protocols

ip       0    IP   # internet protocol, pseudo protocol 
number

icmp     1    ICMP # internet control message protocol

igmp     2    IGMP # internet group multicast protocol

ggp      3    GGP  # gateway-gateway protocol

tcp      6    TCP  # transmission control protocol

pup     12    PUP  # PARC universal packet protocol

udp     17    UDP  # user datagram protocol



idp     22    IDP  # WhatsThis?

raw    255    RAW  # RAW IP interface

The exact contents of the /etc/protocols file on your system might differ a little from 
the file shown here, but the protocol numbers and names are probably the same. There 
might be additional protocols listed, depending on your version of Linux and 
networking software. 

The last TCP/IP configuration file used on most Linux systems identifies existing 
network services. This is /etc/services. As with the /etc/protocols file, this file is not 
usually modified by an administrator but is maintained by software when installed or 
configured. The /etc/services file is in ASCII format and consists of the service name, a 
port number, and the protocol type. The port number and protocol type are separated by 
a slash. Any optional service alias names follow. A short extract from a sample 
/etc/services file (the file is usually quite lengthy) is shown next: 

# network services

echo     7/tcp

echo     7/udp

discard  9/tcp   sink  null

discard  9/udp   sink  null

ftp      21/tcp

telnet   23/tcp

smtp     25/tcp   mail mailx

tftp     69/udp

# specific services

login    513/tcp

who      513/udp   whod

Most /etc/services files have many more lines, because a wide number of TCP/IP services 
are supported by most versions of Linux. Because you never have to worry about the 
contents of this file, you don't need to check each entry. 



Configuring Solaris

SunSoft Solaris 2.4 is a System V Release 4 version of UNIX, so it is configured very much 
like the SCO UNIX system configured earlier. The Ethernet interface and drivers are 
linked into the kernel when the operating system is loaded, so none of the device 
configuration should have to be modified. When the Solaris operating system is loaded, 
part of the configuration procedure asks for the name of the server and its IP address (in 
the sample network the name is brutus and the IP address is 147.120.0.3). 

These settings are then placed in the /etc/hosts file. You can use any ASCII editor to 
enter the rest of the machines on the sample network to complete the /etc/hosts file, as 
shown here: 

#

# Internet Host Table

#

127.0.0.1           localhost

147.120.0.3         brutus brutus.tpci.com loghost

147.120.0.1         merlin merlin.tpci.com

147.120.0.2         freya freya.tpci.com

147.120.0.4         megan megan.tpci.com_

147.120.0.10        whitney whitney.tpci.com

147.120.0.11        sinbad sinbad.tpci.com

147.120.0.12        pepper pepper.tpci.com

The /etc/networks file on the SPARCstation server is similar to that on the SCO UNIX 
machine: 

loopback       127

sco            132.147

sco-hq         132.147.128



sco-mfg        132.147.64

sco-engr       132.147.192

sco-slip       132.147.32

sco-tcplab     132.147.160

sco-odtlab     132.147.1

maclean_net    147.50.1

bnr.ca         47

In some cases, additional entries might exist for backward-compatibility reasons. You can 
add as many entries as you want to the /etc/networks file. 

As with Linux, the /etc/services and /etc/protocols files are left alone, because they are 
supplied with all the configuration details already entered. These files can be modified 
if you need to disable a particular service (for security reasons, for example), but in 
most cases they are best left unmodified. 

The SPARCstation was supplied with an RJ45 connector to the Ethernet network, so I 
used a transceiver to convert from RJ45 to a BNC connector. Passing through the 
transceiver converts the Ethernet connection to the mode you need. I could have wired 
the entire network with RJ45 connectors, but I would then need a hub to connect all 
the RJ45 connectors to (as I discussed on Day 1, "Open Systems, Standards, and 
Protocols"). 

After the SPARCstation is connected to the network, you can try pinging a remote 
machine. If you get a proper response, all is well and you can move on to configuring 
other machines. If there is a problem with ping, you have to verify that all the files are 
correct, that the IP address is valid, and that the network transceiver is functioning 
properly. 

Configuring Windows NT Server

Windows NT is available in both server and workstation versions. Today I configure the 
server version for the sample network. I use Windows NT Server 3.51 on the sample 
system although Windows NT 4.0 performs in almost exactly the same way. (Windows NT 
4.0 was still in beta as this book was being written; the only changes noticeable were 
because of the GUI modifications to resemble the Windows 95 GUI.) Although TCP/IP is 
provided with Windows NT, it is not installed as the default network protocol. Instead, 



IPX/SPX and NetBEUI are installed as default protocols. To configure TCP/IP, you need 
to extract the TCP/IP software from the distribution media if it hasn't already been 
installed. 

You can check for the presence of the TCP/IP software by opening the Network Settings 
window inside the Control Panel. This window is shown in Figure 9.2. The scroll list in 
the bottom left corner has a list of all installed components. If it does not include an 
entry such as TCP/IP Protocol, the TCP/IP software is not installed. To install the 
TCP/IP software, click the Add Software button on the Network Settings window. 

Figure 9.2. The Windows NT Network Settings screen shows all the components 
that are installed. 

When you select Add Software, the system checks for all the installed and available 
components (which can take some time), then displays the windows shown in Figure 9.3. 
After selecting TCP/IP to be installed, you can select the specific TCP/IP components 
and any other TCP/IP services you want to install from the window shown in Figure 9.4. 

Figure 9.3. You can add the TCP/IP software to your Windows NT system through 
this window. 

Figure 9.4. Select the components of the Windows NT TCP/IP software that you 
want to install from this window. 

The server version of Windows NT offers several TCP/IP configuration options and extra 
services. Those shown in Figure 9.4 include the following: 

●     TCP/IP Internetworking: These must be installed for TCP/IP to function. It 
includes the drivers for TCP, IP, UDP, and ARP, as well as several other protocols 
like ICMP. PPP and SLIP are also provided through this option. 

●     Connectivity Utilities: Utilities like finger, ping, telnet, and many others. These 
should be installed with all TCP/IP configurations. 

●     SNMP Service: The SNMP drivers used to enable the server or workstation to be 
administered remotely. This option should be used if your Windows NT machine is 
to be managed by a remote UNIX workstation. The SNMP Service is also required if 
you want to run the Performance Monitor and obtain TCP/IP behavior statistics. 

●     TCP/IP Network Printing: Enables network printers (those attached directly to 
the network cables instead of a PC) to be used. This option can also be used if you 
want to send all print requests on this machine to another machine for handling, 
such as a UNIX print server. 

●     FTP Server Service: If you want to use FTP to transfer files from Windows NT, 
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this service must be loaded. 

●     Simple TCP/IP Services: Offers specialty services like Daytime, Echo, and Quote 
that are used by some applications. If you are using UNIX workstations on the 
same network, these services probably should be supported by the Windows NT 
machine. 

●     DHCP Server Service: Installs the DHCP server software. If you want to use 
DHCP on your network, you need a DHCP server. 

●     WINS Server: If WINS is to be used on your network, install the server software. 

Clicking the OK button begins the installation process, with Windows NT prompting you 
for the distribution CD-ROM or disks as needed. After the TCP/IP software is installed, 
you have to reboot the machine and then the Network Settings window should show 
the TCP/IP protocols in place. 

If you installed a network adapter when the Windows NT operating system software 
was loaded, the network adapter card should also show in the list of installed 
components in the Network Settings window. If you need to add a network adapter card 
to the system, it can be added through the Network Settings window, too. The Add 
Adapter button starts the installation routine, which prompts for the type of network 
adapter card, then the settings on the card for IRQ and memory address. After the 
network card has been configured, the drivers are loaded by Windows NT, then a system 
reboot makes the card available. 

The Network Settings window lets you configure each component of the TCP/IP 
software installed on the Windows NT server. You can change the machine name and 
domain name from the Network Settings window by clicking the Change button next to 
those items at the top of the screen. Only an administrator can change the machine and 
domain names. 

If you highlight TCP/IP Protocol in the Network Settings window, then click the 
Configure button, you see the TCP/IP Configuration window shown in Figure 9.5. This 
lets you provide the IP address of the local machine (assuming it is not assigned through 
the use of another service like DHCP or WINS). If you are using a DHCP or WINS server 
(other than the machine you are configuring now), the IP address of that server should 
be entered on this screen. 

Figure 9.5. The IP address of the local machine is entered in this window. 

If you are using DNS on your network, select the DNS button in the TCP/IP 
Configuration window. This displays the DNS Configuration window. This window lets 
you specify the hostname and domain name of the DNS server as well as any specifics 
about the DNS server search order. If you are not using DNS, you can leave this window 
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as it is. Because you are not setting up a DNS server at the moment, you can leave this 
window alone. Finally, the Advanced button on the TCP/IP Configuration window lets 
you select subnet masks and gateway IP addresses, if necessary. 

From the Network Settings window, you should check the network bindings to make 
sure TCP/IP is used for communications over the local area network. Select the Bindings 
button on the Network Settings window to display the Network Bindings window, 
shown in Figure 9.6. 

Figure 9.6. The Network Bindings window shows all network bindings configured on 
the system. 

If TCP/IP is properly configured, you see the TCP/IP protocol bound to the network 
adapter card. The binding should be enabled, as shown by a yellow lightbulb to the left 
of the binding name. If it is not enabled, click the Enable button at the bottom of the 
window. If other protocols, such as IPX/SPX, are bound to the same network card and 
enabled but not needed, you should disable them. Only leave the bindings that you need 
enabled. 

After the configuration information has been verified, you should click Update or OK 
and allow Windows NT to complete the configuration for you. You might have to 
provide the source disks or CD-ROM if new software is necessary. After the 
configuration is complete, you need to reboot the machine to effect any changes. 

To verify that the configuration is working properly, you should run the ping command 
and try pinging another machine on the network. The ping utility is DOS-based and can 
usually be found under WINNT35\SYSTEM32. Start a DOS session and issue the ping 
command, followed by a known IP address. If the remote is successfully pinged, your 
installation and configuration are working. 

Testing the Server Configurations

Testing the TCP/IP configuration on any of the four configured servers is 
straightforward. Begin by using ping on each machine to ensure that the software is 
talking to the network hardware. Unfortunately, a successful ping of the local 
machine does not always mean the network is being accessed properly; it simply means 
the network software is processing the request. To test the network interface itself, 
ping the other machines on the network. In the following example, merlin is the local 
host and sinbad is a DOS machine running ftp Software's PC/TCP (which you see 
tomorrow): 
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$ ping merlin

PING localhost (147.120.0.1): 56 data bytes

64 bytes from localhost (147.120.0.1): icmp_seq=0 ttl=255 
time=0 ms

64 bytes from localhost (147.120.0.1): icmp_seq=1 ttl=255 
time=0 ms

64 bytes from localhost (147.120.0.1): icmp_seq=2 ttl=255 
time=0 ms

64 bytes from localhost (147.120.0.1): icmp_seq=3 ttl=255 
time=0 ms

64 bytes from localhost (147.120.0.1): icmp_seq=4 ttl=255 
time=0 ms

--- localhost ping statistics ---

5 packets transmitted, 5 packets received, 0% packet loss

round-trip min/avg/max = 0/0/0 ms

$ ping sinbad

PING sinbad (147.120.0.11): 56 data bytes

64 bytes from localhost (147.120.0.1): icmp_seq=0 ttl=255 
time=20 ms

64 bytes from localhost (147.120.0.1): icmp_seq=1 ttl=255 
time=20 ms

64 bytes from localhost (147.120.0.1): icmp_seq=2 ttl=255 
time=50 ms

64 bytes from localhost (147.120.0.1): icmp_seq=3 ttl=255 
time=30 ms

64 bytes from localhost (147.120.0.1): icmp_seq=4 ttl=255 
time=40 ms

--- pepper ping statistics ---

5 packets transmitted, 5 packets received, 0% packet loss



round-trip min/avg/max = 20/32/50 ms

The first test shows that the software is configured properly. The command to ping 
merlin resulted in a conversion within the /etc/hosts file to recognize the instruction 
as the localhost entry. After verifying the local connection, the remote machine is 
tried. The successful round-trip of the packets indicates that the remote is working 
properly, and that the network is functional. Of course, this works only if the remote 
machine has been loaded with TCP/IP software and is active. 

If the localhost ping command failed, the software was probably configured 
incorrectly, or the hardware was not accessed properly. First, check the connectors on 
the network cards, because they have an annoying habit of working loose. Next, check 
the network configuration (IRQ, address, and type of adapter), followed by the 
configuration files, as shown earlier. If everything looks correct and the remote 
machine answers its own ping command properly, there is a problem with software 
compatibility. 

The netstat network status command is useful for monitoring the network's 
performance and detecting problems. TCP/IP system administrators frequently use the 
options -i, -m, and -s. See Day 13, "Managing and Troubleshooting TCP/IP," for more 
troubleshooting information. 

A common problem is the lack of enough STREAMS buffers, which causes a process to 
hang or a connection to terminate for no apparent reason. The size of the STREAMS 
buffer and its current status can be checked with the command netstat -m: 

$ netstat -m

streams allocation:

                     config   alloc    free   total     max    
fail

streams                 292      78     214     145      79       
0

queues                 1424     360    1064     327     364       
0

mblks                  5077     197    4880    3189     206       
0

dblks                  4062     197    3865    3167     205       
0

class 0,    4 bytes     652      51     601     357      53       



0

class 1,   16 bytes     652       1     651     284       3       
0

class 2,   64 bytes     768       8     760    2158      15       
0

class 3,  128 bytes     872     104     768     237     106       
0

class 4,  256 bytes     548      21     527      90      22       
0

class 5,  512 bytes     324      12     312      13      13       
0

class 6, 1024 bytes     107       0     107       1       1       
0

class 7, 2048 bytes      98       0      98       1       1       
0

class 8, 4096 bytes      41       0      41      26       1       
0

total configured streams memory: 1183.09KB

streams memory in use: 44.66KB

maximum streams memory used: 58.28KB_

The number in the fail column should be 0 in each row; otherwise, there is a problem 
with the amount of buffer allocated. To change the number of STREAMS buffers 
allocated, kernel variables must be changed and the kernel relinked. As a general 
rule, if there are problems with the existing STREAMS buffer sizes, increase the number 
by 50 percent. If that doesn't solve the problem, increase by another 50 percent. 

To fully test the TCP/IP system, use Telnet or FTP to log in and transfer files from 
machine to machine. Because these two utilities are the most common users of TCP/IP 
(unless NIS or NFS are active), they help show any problems with the port assignments, 
services provided, or name mapping. 

Pseudo ttys



Most UNIX systems support pseudo ttys (false terminals) to enable external machines to 
use Telnet and rlogin for access to the local machine. Without a pseudo tty, the remote 
machine cannot establish a session. 

The SCO UNIX system, for example, configures 32 pseudo ttys by default, which should 
be plenty for small and moderate sized networks. (Remember that 32 pseudo ttys enable 
32 sessions from remote users.) Adding or deleting pseudo ttys can be done through a 
configuration utility or, in the case of SCO UNIX, with the mkdev ptty command. There 
is no useful advantage gained by drastically reducing the number of pseudo ttys on 
small networks. Pseudo ttys should be reconfigured after TCP/IP has been installed and 
is working correctly. 

User Equivalence

User equivalence lets a user rlogin to another machine with the same account 
information, without entering a password. This is helpful when a user must log into 
another machine frequently, avoiding the login process for speed and reducing the 
number of processes running on the remote. 

To permit user equivalence, UNIX requires that the user exists on both machines and 
that entries in two configuration files match. The /etc/passwd file, which controls 
overall access to the machine, must have an entry for the user's login name on both 
machines. One of two configuration files also must have information about the user. 

If the file .rhosts is used, user equivalence is established only for accounts specifically 
named in the file. The .rhosts file usually resides in the root directory and has one 
entry per line, specifying the remote machine name and the user ID. An .rhosts file looks 
like this: 

# .rhosts file for brutus.com

merlin tparker

merlin ychow

merlin bsmallwood

pepper etreijs

pepper tparker



freya rmaclean

With this configuration, the user tparker, on remote machine merlin, could log in to the 
local machine as tparker only. A user can allow access to an account by another by 
creating a .rhosts file in his or her home directory. 

If the file hosts.equiv is used (which usually resides in the /etc directory), user 
equivalence is valid for any account on both machines except root. If the file 
hosts.equiv contained only a machine name, any valid user on that machine would be 
allowed user equivalence (except root). The machine is called a trusted host. 

Unfortunately, this type of access poses considerable security problems, so it should be 
used only under stringently controlled or very reliable conditions. A major problem is 
that a user can log in as any other valid user on the remote system without using a 
password. A sample hosts.equiv file looks like this: 

# hosts.equiv for brutus.com

merlin tparker

pepper

freya rmaclean

In this example, any user on the remote system (pepper) could log in as any valid user 
(except root) on the local machine, without using a password. Only the user tparker, on 
the remote machine merlin, could log in as any valid system user (except root) on the 
local machine. The potential for misuse of user equivalence with this type of access is 
high, although it can be handy for access to specific utilities or applications. 

If both .rhosts and hosts.equiv exist with entries for the same machine and user ID, the 
entry from the hosts.equiv file is used for determining the user's equivalence. Remember 
that for both .rhosts and hosts.equiv, matching user entries must exist in the /etc/passwd 
file. 

User equivalence configuration can cause problems for system administrators that are 
frequently blamed on the network software. Also, some users might want to allow 
specific entries by a user on a remote system without having the system administrator 
grant open privileges. 

To illustrate the entries more clearly, a concrete example might help. Assume user 
ychow, on the machine pepper, wants to access machine merlin as both ychow and shortie 
without using passwords. (In other words, ychow on pepper is equivalent to ychow and 
shortie on merlin.) There are several methods of configuring the system to allow this. 
The system administrator can create an .rhosts file in the root directory that has the 



following entries: 

pepper ychow

pepper shortie

This allows only ychow (on pepper) to log in as ychow, with no access as shortie unless 
shortie is logged in to pepper, too. This isn't what is required. An entry in the hosts.equiv 
file like this 

pepper ychow

doesn't solve the problem either because ychow can now log in as any valid user on 
merlin. Solving this requires each user that wants to allow ychow to access their 
directories to place an .rhosts file in their home directories. On the sample network, 
both ychow's and shortie's home directories on merlin would have the same entries. 

User ychow can now log in to merlin using one of the following commands: 

rlogin merlin

or 

rlogin merlin -l shortie

The latter command logs ychow in as the user equivalent shortie. The first retains the 
same login ID. Note that the .rhosts file resides in the home directories of the users who 
want to allow remote user access. 

Anonymous FTP

Anonymous FTP enables users from other locations to access a system without logging 
on. They obtain the FTP prompt as usual but enter anonymous as the user name. In most 
systems, a password can be anything, although convention dictates that the user's login 
name be supplied for tracking purposes. There is no check of the names, however. Once 



logged in to anonymous FTP, users can browse through public directories and retrieve 
files that reside there. Anonymous FTP is excellent for distributing information to the 
general public, but its open access has accompanying security concerns. 

When a user logs in to the anonymous FTP account, UNIX invokes a process called 
chroot, which restricts the user from moving out of the home directory. The dependence 
on chroot requires that some system configuration files (including a copy of the 
/etc/passwd and /etc/group files) reside in the anonymous FTP directories. 

Configuring a UNIX system for anonymous FTP involves establishing a public directory 
system and changing file permissions to prevent unwanted access to other parts of the 
file system. Also, an anonymous account is created using the user name ftp. Anonymous 
FTP usually uses the user ftp's home directory created when the user is generated. 

To set up anonymous FTP access, create a user called ftp. With UNIX systems, this is 
usually performed with a script called mkuser or a system utility. Alternatively, the 
user can be added to the /etc/passwd file. A group called ftp should exist or be created. 
Once the home directory for the user ftp exists, change its user and group identities to 
ftp (using the chown and chgrp commands). 

Assuming the user ID ftp has been created and the home directory is /usr/ftp, the steps to 
follow are shown here. (Comments shown after the pound sign are for description 
purposes only and need not be entered.) 

$ cd /usr/ftp   # change to the home directory

$ chmod 555 .   # set file permissions to r-x

$ chown ftp .   # change the owner to ftp

$ chgrp ftp .   # change the group to ftp

$ mkdir pub     # create public directory (see below)

$ chmod 777 pub # set pub dir permissions as rwx

$ mkdir bin     # create bin dir for executables

$ cd bin

$ chmod 555 bin # set bin dir to r-x

$ cp /bin/sh /bin/ls .

$ cd ..



$ mkdir etc     # create etc dir for passwd file

$ chmod 555 etc # set etc dir to r-x

$ cd etc

$ cp /etc/passwd /etc/group .

$ chmod 444 passwd group

$ cd ..

If you want to create subdirectories beneath the home directory for the anonymous 
user to access, ensure that they have the correct ownerships, as well. It is common 
practice to create a directory called ftp/pub for uploading files to the system. Set file 
permissions so that the user cannot exit the home directory structure. In the previous 
example, all the directories except pub are set to read and execute only. The example 
copied the shell and listing utilities into the FTP directory structure so the anonymous 
user can access them. Other utilities can be copied if desired. 

The /etc/passwd and /etc/group files must be copied into a directory called etc (below 
the ftp user's home directory) to enable chroot to function properly. It is strongly 
recommended that these files be edited to remove any other user information; it is 
conceivable that an anonymous user could access and analyze the files for information 
about the local system, leading to an unwelcome break-in. Remove all users from the 
/etc/passwd file except for root, daemon, uucp, and the ftp entries. Similarly, prune the 
/etc/group file to remove all but these entries. 

To help prevent unwanted access, the file etc/ftpusers can be created to contain user 
names that result in immediate disconnection. This file should have entries for root and 
uucp as a minimum. 

Windows NT Server enables anonymous FTP through a different mechanism (because it 
isn't UNIX). To enable anonymous FTP on the Windows NT server on the sample network, 
you have to enable the FTP server. The software for the server should be installed as 
shown earlier. During the installation you will probably receive a warning about the 
insecurity of using FTP to transfer passwords over your network. However, unless you 
can install an authentication scheme for your passwords, this is a necessary evil to 
enable FTP access to the Windows NT machine. 

To configure the FTP server software, you select the FTP server item from the Network 
Settings window shown in Figure 9.2, then click the Configure button. This displays the 
FTP Service window shown in Figure 9.7. You can adjust the number of sessions allowed 
as well as the time-out interval using the options at the top of this window. 

Figure 9.7. Use this window to alter the behavior of the FTP server. 
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You might notice that the bottom part of the screen lets you set the FTP server to 
enable anonymous connections. You can set the anonymous login and password if you 
want. This enables users who are not on the authorized Windows NT Users' list to 
transfer files from the Windows NT machine. It is a good idea to restrict access to a 
subdirectory where there are no sensitive files available. 

You can monitor the behavior of the FTP server system through the FTP Server icon on 
the Control Panel. This displays a window like the one shown in Figure 9.8, which lists 
all active users. The Disconnect and Disconnect All buttons at the bottom of the 
window can be used to force users off the Windows NT machine. 

Figure 9.8. The FTP Server window shows users who are currently using FTP. 

Some security settings can be controlled through the FTP Server window by clicking 
the Security button. This displays the window shown in Figure 9.9. The Read and Write 
options enable you to control access to entire drives (all floppy and hard drives, as 
well as any mounted drives such as CD-ROMs and optical or removable media). 

Figure 9.9. The FTP Server Security window lets you set broad access rights to 
drives. 

Configuring SLIP and PPP

Serial Line Internet Protocol (SLIP) and Point-to-Point Protocol (PPP) operate over 
serial lines and require some additional information. Because SLIP and PPP connections 
are between two machines, the source and destination IP addresses are needed. Also, the 
serial port identifier is needed, including the interrupt vector it uses. Serial lines must 
be properly configured with their baud rate. This is usually set within another file on 
the system. SLIP connections also require a netmask setting, although this is not needed 
for PPP. 

PPP is more versatile than SLIP. SLIP supports asynchronous communications only, 
whereas PPP enables synchronous and asynchronous. SLIP must have a dedicated line 
that is always tied up, whereas PPP can share the line with other programs like UUCP 
and free the line on command. SLIP lacks any error detection, whereas PPP implements 
it. Given the choice, PPP is the better serial-line TCP protocol, although it is not 
available with all operating system implementations. 

SLIP and PPP connections are usually established in the same manner as the Ethernet 
drivers. SCO UNIX, for example, uses the netconfig utility, mentioned previously. When 
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adding a SLIP or PPP chain, the system prompts for the serial line to be used, the baud 
rate, the address of the local and destination machines, and the remote machine's name. 
It then configures the system to use that serial port. After relinking the kernel and 
rebooting, the serial line is available for either SLIP or PPP (depending on the way it 
was configured). 

Remote Printing

Remote printing is a useful feature that enables a user on one machine to send print jobs 
to other machines that have attached printers. The system is called Remote Line 
Printing (RLP) and is commonly used to share printers in a workgroup. It is also useful 
for enabling access to specialty printers such as color lasers and plotters. RLP does not 
support printer classes, and some operating systems impose restrictions on supported print 
command-line options. Remote administration of printers is not supported. 

RLP functions differently than normal UNIX printing. When a print request is issued, 
the system consults the printer configuration file (usually /etc/printcap) to determine 
if the printer is local or remote. If the print request is for a local printer, the usual 
process applies. If the request is for a remote printer, the local system spools the print 
request and invokes the lpd daemon, which packages the print request and sends it to 
the remote machine, where it is spooled for the printer. A user can set a remote printer 
as the default destination, as is commonly done in workgroups that share a single 
printer. 

Several versions of RLP are available with support for different operating systems on a 
network. SCO UNIX, for example, supports two kinds of clients: SCO-based systems and 
4.3BSD systems. This enables workstations running Berkeley's 4.3BSD to queue print 
requests to SCO print servers. SCO clients use RLP with the same commands as a local 
printer would (lp and cancel), but 4.3BSD clients have special versions of the commands 
(lpr and lprm). 

Assuming that RLP is available with your operating system (some versions of UNIX do 
not support it), it is usually installed and activated with a script or utility program. 
With SCO UNIX, a mkdev rlp command initiates the installation script. Other operating 
systems use a similar utility. During the installation process, a number of directories are 
created to handle the spooling, and modifications are made to the printer configuration 
files. The old printing commands are archived to a directory, and new versions that 
support RLP are copied into their place. 

Remote printing requires a special entry in the printer configuration file (/etc/printcap). 
Some operating systems (such as SCO UNIX) have a script that edits the file for you, 
prompting for the configuration information. A sample line in the file for a remote 



printer would look like this: 

hplaser::lp=:rm=main_hplaser:rp=hplaser:sd=/usr/spool/lpd/hplaser

The first field is the name used by the local machine to refer to the printer. The second 
field is usually empty. It defines the name of an error log file but is not used on most 
systems. The third field is the device name for a local printer. Remote printers leave the 
field as lp= with no specified printer. The fourth field is the network name for the 
printer. It can be the same as the local name. The fifth field is the name the print server 
uses for the printer (usually the same as the local name). Finally, the sixth field is the 
name of the spooling directory for the printer. This is where print requests are spooled 
before being sent to the remote printer. 

In order for machines on the network to access the Hewlett-Packard LaserJet that is 
attached to the main machine on the sample network, the three remote machines should 
have entries for the printer in their /etc/printcap files. The main machine also has an 
entry for it, but as a local printer. 

Administering a remote printer is done either by logging into the console of the machine 
to which the printer is attached or by using several RLP utilities from another machine. 
The utilities differ with each operating system. 

Windows NT Server has remote TCP/IP printing capabilities available as part of the 
TCP/IP suite. 

Configuring SNMP

Most TCP/IP networks use the Simple Network Management Protocol (SNMP) to monitor 
the network for problems. It enables a system to examine and alter networking 
information maintained by other machines on the network. SNMP is a simple protocol 
that uses UDP as a transport. 

Many UNIX operating systems use a daemon to run SNMP. When the system is running, 
SNMP listens on its dedicated port for incoming requests. Three configuration files are 
also usually involved. 

The file /etc/snmpd.conf contains basic information required by SNMP. The file contains 
identifiers for the types of SNMP and TCP/IP software, as well as the contact name of 
the system administrator and the location of the system. A sample file looks like this: 



# snmpd.conf configuration file for tpci.com

# the first two fields are default value

descr=SNMPD Version 4.0 for SCO UNIX

objid=SCO.1.0

contact=Tim Parker x53153

location=Network Room

If SNMP is set to send trap messages (asynchronous event messages), it sends 
introductory packets (called cold-start traps) to other systems that it is functioning. It 
reads the names of the systems to send cold-start traps to from the file /etc/snmpd.trap, 
which lists names, IP addresses, and port numbers: 

# sample snmpd.trap file for tpci.com

# lists symbolic name, IP address, and port

test1   128.212.64.99   162

merlin   147.120.0.2    162

The file snmpd.comm is a list of community and IP address pairs that specifies from whom 
the agent can accept queries. Each line in the file has the name of the community 
(sometimes called a session), the IP address of the site (a value of 0.0.0.0 enables any 
address to communicate), and the privileges that site is allowed. If the privilege is set to 
READ, only read operations are permitted; WRITE enables read and write operations; 
and NONE restricts all access. 

# Copyrighted as an unpublished work.

#  Copyright 1989 INTERACTIVE Systems Corporation

# All rights reserved.

#      @(#)snmpd.comm    3.1 INTERACTIVE SNMP  source

test1 128.212.64.99 READ

test2 128.212.64.15 WRITE

test3 128.212.64.15 READ



public 0.0.0.0 read

beast 0.0.0.0 read

excaliber 0.0.0.0 read

Configuration of SNMP is usually through an interactive shell script. During the 
script, the user is prompted for all the information needed for the three configuration 
files. SCO UNIX uses the command mkdev snmp to install the system. 

Summary

This chapter has shown how to install and configure several servers with TCP/IP. These 
methods have been tested and work correctly. In the process, this chapter mentioned 
several alternative services such as anonymous FTP and remote printing. Whether these 
are available on your network is up to you (or the system administrator). The next 
chapter adds client machines to the sample network. 

Q&A

What information is necessary to configure a machine's TCP/IP software? 

For a complete configuration, TCP/IP requires the domain name, system name, IP address, 
driver type, broadcast address, netmask, and hardware network card settings. Some 
systems enable configuration with only some of this information. 

What does the network mask do? 

The network mask removes the network identifier from an IP address, leaving only the 
local machine's address. For example, an IP address of 146.120.94.4 can have the network 
mask 146.120 applied to leave the local machine address as 94.4. 

What role does the /etc/inetd.conf file play? 

The file /etc/inetd.conf indicates the processes started by the inetd daemon when a 
system boots. 



Explain user equivalence. 

User equivalence lets a user access another machine without requiring a password 
during the login process. It is controlled by a set of files controlled by the system or 
individual users. 

Quiz

1.  How many devices are enabled on a Class B network (the most common)? 

2.  What is the difference between the BSD UNIX TCP/IP broadcast address setting 
and the one normally used? 

3.  What is a pseudo tty? 

4.  What does the following .rhosts file do? 

# .rhosts 
artemis tparker 
artemis goof 
artemis aarmenakis 
mig rmaclean 

5.  What is anonymous FTP and why would you use it? 
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and Windows Clients



Yesterday, you configured the servers on the sample network. All three UNIX servers 
followed the same procedure and had similar configuration files. The Windows NT 
server was configured using the built-in TCP/IP stack. Today you configure some clients 
for the network. The clients communicate with the server through a TCP/IP stack 
loaded on each machine. You configure three clients: one DOS, one Windows 3.x, and one 
Windows 95. Any of the operating systems you configured yesterday as servers can also 
act as clients on the sample network. 

Windows 95 includes TCP/IP client software as part of the distribution software 
package, but it is not configured when Windows 95 is installed. This is because Windows 
95 installs NetWare's IPX/SPX network protocols as the default. Today you see how to 
change the default protocol to TCP/IP. For the DOS and Windows 3.x machines, several 
products are available to offer TCP/IP protocols. I have selected two of the most 
popular packages to configure on these systems. The DOS machine is configured using ftp 
Software's PC/TCP software product. The Windows 3.x machine, running Microsoft 
Windows for Workgroups 3.11, is configured with NetManage's ChameleonNFS. 

Configuring DOS and Windows machines is different than configuring UNIX systems 
because of the changes in filesystems, operating system architecture, and the individual 
software vendor's approaches. However, the same basic information is required, and the 
steps to add DOS machines are analogous to those for a UNIX system. 

Although today I use two specific commercial packages for the DOS and Windows 3.11 
machines, the process is similar to other vendors' TCP/IP products. The names of files and 
the exact configuration information might differ, but the same general principles apply. 

DOS-Based TCP/IP: ftp Software's PC/TCP

PC/TCP from ftp Software has been available for several years and has become a de 
facto standard for DOS machines that want to connect with a TCP/IP network. PC/TCP 
runs under both DOS and Windows. It lets a user perform all the TCP/IP functions, such 
as ftp and telnet, and includes software for several members of the TCP family of 
protocols, including SNMP. Other machines can also access a PC running PC/TCP, 
copying its files (assuming access has been granted). Bear in mind that we are 
configuring this machine as a DOS platform only, even though PC/TCP offers some 
Windows icons. The machine might be an older device that doesn't support Windows, for 
example, or the user might not want to install Windows 3.X on this machine. Some DOS-
based applications might not work with a Windows-based TCP/IP stack—hence the need 
for a DOS-only TCP/IP configuration. 

PC/TCP can run TCP/IP as the sole network protocol on the PC, or it can piggy-back on 



top of other networks, such as Windows for Workgroups (NetBEUI and NetBIOS) or 
Novell NetWare (IPX/SPX). Your system administrator can decide the best configuration 
for your machine, depending on the nature of the network. For example, if a large 
Windows for Workgroups network already exists but a user wants access to a TCP/IP 
UNIX server, it might not make sense to convert the entire network to TCP/IP. In that 
case, either a second network card can be added specifically for the TCP/IP network or 
TCP/IP can coexist with the Windows for Workgroups system. (Remember that TCP/IP isn't 
particular about the network transport type.) 

The sample network you are configuring is TCP/IP-based, so PC/TCP is installed to run on 
that network protocol only. However, because it would be useful to be able to run 
Windows for Workgroups over the network between the DOS and Windows 3.11 
machines, the installation process you take is designed so that both NetBEUI and TCP/IP 
can reside simultaneously on the network. 

One approach is to set the PC/TCP system to enable Windows for Workgroups and TCP/IP 
packets on the same network. With this approach, TCP/IP sends out IP packets, and 
Windows for Workgroups sends out NetBEUI packets (the default type). Both protocols 
use NDIS (Network Device Interface Specification) device drivers to communicate with 
the network card. The problem with this approach is that other machines receiving the 
packets might get confused because of two different packet types, and the system does 
not work well if an external network is to be accessed (such as the Internet), because 
routers do not handle NetBEUI packets. 

The alternative approach is to configure Windows for Workgroups to encapsulate its 
message within IP packets, which can then be sent across the internetwork and the local 
network between TCP/IP machines with no problems. This approach has a couple of 
useful advantages. The network is completely IP-based, so routers can handle the 
traffic through internetworks. Also, a Windows for Workgroups computer on another 
network can communicate through the router, hence making the Windows for 
Workgroups services more widely available. A receiving Windows for Workgroups 
machine has to extract the information from the IP packet, but otherwise the system 
works well. 

The sample network you are installing is configured to enable both PC/TCP and 
Windows for Workgroups to coexist using NDIS drivers. This results in two software 
stacks—one for PC/TCP and one for Windows for Workgroups—coexisting and 
communicating with the NDIS driver. This structure is shown in Figure 10.1. This is 
probably not the best choice for the sample network, because all the other machines on 
the network prefer TCP/IP packet formats, but this approach shows how PC/TCP can be 
configured for dual protocols on other networks. 

Figure 10.1. PC/TCP and Windows for Workgroups stacks using NDIS. 

PC/TCP uses a kernel that is loaded into memory when DOS boots. The kernel is a 
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Terminate and Stay Resident (TSR) program. To ensure that the network is available at 
all times, the kernel load command is usually added to the AUTOEXEC.BAT file. The 
sample network uses a kernel called ETHDRV.EXE, which is the Ethernet driver 
supplied with PC/TCP. (A different kernel must be used if the network is IEEE 802.3 
Ethernet, which differs from the normal DIX Ethernet.) In addition, an NDIS Converter 
must be loaded in the AUTOEXEC.BAT file as a device driver to provide NDIS-format 
packets to the protocol manager. 

Installing PC/TCP

PC/TCP includes an automated installation procedure that copies the distribution media 
to the hard disk and sets up some of the configuration files. Today, most of the system is 
configured manually to show the necessary steps, and to enable you to verify the 
changes made to system files by the installation program. In practice, you would allow 
PC/TCP to install itself and perform the configuration automatically, then check the 
files for proper content. 

Installation of PC/TCP requires the same basic information as TCP/IP under UNIX: the 
device driver, the system's name and IP address, and the names and IP addresses of other 
systems to be accessed. The process begins with a properly installed network card. The 
IRQ and memory address of the card must be known, and a device driver for it must be 
present for inclusion in the CONFIG.SYS file. Device drivers are usually supplied by the 
network card vendor, but generic drivers are also included with the PC/TCP software 
disks. They include drivers for the most popular types of network systems but might not 
include all possible cards. 

After copying all the distribution files to the hard drive, the configuration can begin. 
The sample machine is running DOS 6.22 and Windows for Workgroups 3.11, although you 
are configuring the DOS operating system in particular in this section. Changes in the 
DOS software release number might affect the following details, but the PC/TCP 
installation instructions are updated for new releases. When installing PC/TCP with 
Windows for Workgroups, the Windows network must be installed, configured, and 
running properly before PC/TCP modifies the Windows files to enable both DOS and 
Windows to work over the network. 

During the installation process, PC/TCP requires a lengthy serial number and 
authentication key. These verify the software and prevent a network from using many 
copies of the same software when only one license has been purchased. 

Four files are involved in the initial configuration: 

●     AUTOEXEC.BAT: Starts the PC/TCP kernel 



●     CONFIG.SYS: Starts the device drivers for the network and PC/TCP 

●     PROTOCOL.INI: Defines the type of network and drivers 

●     PCTCP.INI: Kernel parameters for PC/TCP 

In yesterday's material, UNIX kernel parameter configuration was mentioned in passing 
as a way to fine-tune the behavior of the operating system with TCP/IP. In some cases, 
this is necessary with the DOS PC/TCP system, as well. A utility program called 
KAPPCONF enables the kernel parameters to be altered. The settings for the kernel are 
saved in a configuration file called PCTCP.INI. 

The AUTOEXEC.BAT File

The AUTOEXEC.BAT file requires environment variables to be properly set for PC/TCP 
and two instructions added to the file. One instruction starts the network and the 
other loads the Ethernet driver. The sample machine already had Windows for 
Workgroups installed, so a line in the AUTOEXEC.BAT file reads 

C:\WINDOWS\NET START

This line starts the network. The NET START command can remain in place or be 
replaced with a PC/TCP command called NETBIND, which accomplishes the same thing 
for NDIS drivers. If both commands are in the AUTOEXEC.BAT file, an error message 
results when the second network startup command is executed. (The drive assignments 
for all the examples today might be different on other systems, as might the 
installation directories. Installation defaults were used throughout this chapter for 
both PC/TCP and Windows for Workgroups. Change their values as needed to match 
your system.) 

After the NET START or NETBIND command, the following line must be added to the 
AUTOEXEC.BAT file: 

C:\PCTCP\ETHDRV

This starts the PC/TCP Ethernet driver. If another network system is being used, this 
would be replaced with the device driver for that network (such as IEEEDRV for IEEE 



802.3 Ethernet or SLPDRV for SLIP). 

It is useful to define two environment variables in the AUTOEXEC.BAT file for the 
PC/TCP software to use when searching for file. One is a simple addition to the PATH 
command, adding the PCTCP installation directory to the search path. The second is an 
environment variable that points to the PCTCP.INI file. The two declarations look like 
this: 

SET PCTCP=C:\PCTCP\PCTCP.INI

SET PATH=C:\PCTCP;%PATH%

The latter change to the PATH command adds C:\PCTCP to an already defined PATH. An 
alternative would be to edit the PATH command to include the directory on the same 
line as the rest of the declaration. The PC/TCP software can be run without these 
environment variables defined, but problems with file locations can result if commands 
are not executed from the installation directory. 

Therefore, on the DOS machine, the completed AUTOEXEC.BAT file should have one of 
the following four-line combinations in it: 

SET PCTCP=C:\PCTCP\PCTCP.INI

SET PATH=C:\PCTCP;%PATH%

C:\WINDOWS\NET START

C:\PCTCP\ETHDRV

or 

SET PCTCP=C:\PCTCP\PCTCP.INI

SET PATH=C:\PCTCP;%PATH%

C:\PCTCP\NETBIND

C:\PCTCP\ETHDRV

When these lines are executed during the system boot process, the system displays status 
messages when each command is completed. The NETBIND command displays this message 
if it loads successfully: 



MS-DOS LAN Manager v2.1 Netbind

Microsoft Netbind version 2.1

A third line might display a status message about the interrupt vector used by the 
system. If NETBIND couldn't load correctly, it generates a message like this: 

MS-DOS LAN Manager v2.1 Netbind

Error: Making PROTMAN IOCTL call.

This usually is generated when the network is already running (such as from issuing a 
NET START command before the NETBIND command; you might recall that only one of 
these two should be in the AUTOEXEC.BAT file). 

The ETHDRV command displays a message with status information when it loads 
successfully. It looks like this: 

MAC/DIS converterFTP Software PC/TCP Resident Module 2.31   
01/07/94 12:38

Copyright  1986-1993 by FTP Software, Inc.  All rights 
reserved.

Patch level 17637

Patch time: Fri Jan 07 14:25:09 1994

Kernel interrupt vector is 0x61

Code Segment occupies 49.0K of conventional memory

Data Segment occupies 19.5K of conventional memory

Packet Driver found at vector 0x60

        name:

        version: 30, class: 1, type: 57, functionality: 6

ifcust (PC/TCP Class 1 packet driver - DIX Ethernet) 
initialized

5 free packets of length 1514, 5 free packets of length 160

The Resident Module occupies 68.7K of conventional memory



If there is an error when the ETHDRV program loads, it generates an error message (of 
varying utility for debugging purposes). A sample error is shown here: 

FTP Software PC/TCP Resident Module 2.31    01/07/94 12:38

Copyright  1986-1993 by FTP Software, Inc.  All rights 
reserved.

Patch level 17637

Patch time: Fri Jan 07 14:25:09 1994

PC/TCP is already loaded (interrupt 0x61). Use 'inet unload' 
to unload it.

This error occurred because a PC/TCP driver had been loaded prior to the ETHDRV 
command. 

Some DOS users like to leave these commands out of the AUTOEXEC.BAT file and issue 
them manually. This has the advantage of reducing the amount of memory chewed up 
when the machine boots and the network is not required. A useful compromise is to 
create a small batch file that has these two commands and then run the batch file only 
if the network is used. Both NETBIND and ETHDRV do not seem to be critical as far as 
when they are loaded in the startup sequence (as opposed to some software that insists 
on being loaded first or last in the AUTOEXEC.BAT file). 

The CONFIG.SYS File

The CONFIG.SYS file has to have drivers loaded for the protocol manager, the NDIS 
packet converter, and the network card driver. Systems running Windows for 
Workgroups might require additional drivers. The CONFIG.SYS file must have an entry 
setting the number of files open at one time to at least 20. If this doesn't exist, PC/TCP 
crashes. Add this line: 

FILES=20

to the CONFIG.SYS file. Depending on the amount of memory available, the number 
could be readily increased. With 8MB RAM or more, a value of 40 is satisfactory. 
Numbers above this setting tend to be counter-productive because RAM is wasted for no 
reason. 



The protocol manager is supplied as part of Windows for Workgroups, and one is 
included with the PC/TCP software package. The choice of which to use is yours or your 
system administrator's. If Windows for Workgroups 3.1 (not 3.11) was already loaded and 
functional, CONFIG.SYS has a line similar to this: 

DEVICE=C:\WINDOWS\PROTMAN.DOS /I:C:\WINDOWS

The protocol manager is not always used with the Windows for Workgroups 3.11 release 
because it is included with other drivers within the CONFIG.SYS file (such as 
IFSHLP.SYS). If there is no protocol manager started at boot time, one should be added 
from the PC/TCP software. The entry within the CONFIG.SYS file is 

DEVICE=C:\PCTCP\PROTMAN.DOS \I:C:\PCTCP

This loads the PC/TCP protocol manager. The \I at the end of the command tells the 
driver where to look for files (in this case, the PC/TCP installation directory). 

A network card driver should appear next in CONFIG.SYS. This differs for each network 
card, but for the sample network DOS machine's Intel EtherExpress 16 network card, the 
line is 

DEVICE=C:\WINDOWS\EXP16.DOS

This loads the EXP16 driver for the Intel network card. This was included with the 
Windows for Workgroups software, but it is also available as a generic driver. Some 
machines with Windows for Workgroups already installed might have this command 
already in the CONFIG.SYS file. 

The final step is to load the PC/TCP NDIS Packet Converter. The current release of 
PC/TCP uses a packet converter called DIS_PKT.GUP. The line looks like this: 

DEVICE=C:\PCTCP\DIS_PKT.GUP

Some systems running Windows for Workgroups 3.1 (and a few that have upgraded to 
3.11) have the line 



DEVICE=C:\WINDOWS\WORKGRP.SYS

in the CONFIG.SYS file. This is for Windows for Workgroups' use and is not necessary if 
PC/TCP is to be used as a DOS-based system only. If the file was not installed by 
Windows for Workgroups and the system works properly without it, there is no need to 
add it. 

When the system boots, the device drivers are loaded in turn. Each displays a short 
message showing its version number. Any errors that occur are also displayed. Usually 
the device drivers don't cause any problems. 

The properly configured CONFIG.SYS file for the DOS machine should have these lines 
in it 

DEVICE=C:\WINDOWS\PROTMAN.DOS /I:\C:\WINDOWS

DEVICE=C:\WINDOWS\EXP16.DOS

DEVICE=C:\PCTCP\DIS_PKT.GUP

if it is using the Windows for Workgroups protocol manager. It should have the 
following lines if it is using the PC/TCP protocol manager: 

DEVICE=C:\PCTCP\PROTMAN.DOS /I:\C:\PCTCP

DEVICE=C:\WINDOWS\EXP16.DOS

DEVICE=C:\PCTCP\DIS_PKT.GUP

As noted earlier, the network interface driver (EXP16) is different if your machine does 
not use the Intel EtherExpress 16 board. 

The position of these lines within the CONFIG.SYS file isn't critical, although there 
might be problems if they are loaded into high memory with other drivers. 
Experimentation is the only way to find the most memory-efficient sequence. 

The PROTOCOL.INI File

Windows for Workgroups has a PROTOCOL.INI file as part of its setup. The file tells the 
system about the network cards and drivers in use. The PC/TCP PROTOCOL.INI file does 



the same, but it resides in the PCTCP directory. 

The contents of the PROTOCOL.INI file are different for each network card and driver 
configuration. There must be a section labeled [PKTDRV] (all in uppercase) that defines 
the driver name, the binding to the network card, and any configuration information 
needed. The sample network's PROTOCOL.INI file looks like this: 

[PKTDRV]

drivername=PKTDRV$

bindings=MS$EE16

intvec=0x60

[MS$EE16]

DriverName=EXP16$

IOADDRESS=0x360

IRQ=11

IOCHRDY=Late

TRANSCEIVER=Thin Net (BNC/COAX)

This PROTOCOL.INI file defines the packet driver as PKTDRV$, the default driver with 
PC/TCP. The binding to the Intel EtherExpress 16 card used on the DOS machine refers 
to another section in the file that lists the address, IRQ, and some specifics of the 
EtherExpress card. These lines could have been included in the [PKTDRV] section but 
were separated for compatibility with the Windows for Workgroups PROTOCOL.INI file, 
which is similar in layout. The EtherExpress 16 card is set to use IRQ 11, memory address 
360, and use the Thin Ethernet cable connector. The intvec line in the [PKTDRV] 
section does not define the IRQ for the network card; instead, it is an interrupt for the 
driver. 

A PROTOCOL.INI file for a system using a simpler network card than the EtherExpress 
can be shorter. A sample PROTOCOL.INI file for such a card might look like this: 

[PKTDRV]

drivername=PKTDRV$

binding=MS$ELNKII



intvec=0x65

chainvec=0x67

Finding the proper settings for the variables in the PROTOCOL.INI file can be a 
harrowing experience. If Windows for Workgroups is installed and running, the 
Windows PROTOCOL.INI file is a good source of information and can sometimes be copied 
without modification. Otherwise, the network card documentation can sometimes help. 

The PCTCP.INI File

The PCTCP.INI file holds the kernel configuration information for PCTCP. In most cases, 
it can be left as supplied with the software. Tweaking the kernel parameters should be 
performed only after the network is installed and has been operating properly for a 
while. The PCTCP.INI file is quite lengthy, and care should be taken to avoid accidental 
changes, which can render the system inoperative. 

If the supplied installation script is not used to install PC/TCP, a minimum PCTCP.INI file 
must be created manually. Examples are included with the distribution media, usually 
under the name TEMPLATE.INI. There are two ways to create the PCTCP.INI file and 
configure it properly. The first is to use an editor and modify the template file. The 
alternative is to run the kernel configuration utility KAPPCONF. 

A minimum PCTCP.INI file needs to have the software serial number and activation key, 
the IP address, broadcast address, router address, a subnet mask, and information about 
the system in general. The minimum PCTCP.INI file would look like this: 

[pctcp general]

domain                 = tpci.com

host-name              = sinbad

time-zone              = EST

time-zone-offset       = 600

user                   = tparker

[pctcp kernel]

serial-number          = 1234-5678-9012



authentication-key     = 1234-5678-9012

interface              = ifcust 0

low-window             = 0

window                 = 2048

[pctcp ifcust 0]

broadcast-address      = 255.255.255.255

ip-address             = 147.120.0.11

router                 = 147.120.0.1

subnet-mask            = 255.255.0.0

[pctcp addresses]

domain-name-server     = 147.120.0.1

mail-relay             = 147.120.0.1

This configuration assumes that the SCO UNIX server (147.120.0.1) is the primary server 
for the network. The DOS machine's name (sinbad) and IP address (147.120.0.11) are shown 
in the PCTCP.INI file. As different features of PC/TCP are enabled (such as SNMP and 
Kerberos), new sections are added to the PCTCP.INI file. 

The Windows SYSTEM.INI File

If Windows for Workgroups is to be used on the DOS machine and you are going to use 
the PC/TCP drivers instead of a dedicated Windows for Workgroups TCP/IP package, the 
Windows for Workgroups SYSTEM.INI file requires modification. The Windows for 
Workgroups SYSTEM.INI file must be set to use the Windows for Workgroups driver 
instead of the PC/TCP driver. 

When the PC/TCP automatic installation process detects a copy of Windows, it makes 
changes to the SYSTEM.INI file for you. Some of these changes must be checked and 
modified to enable Windows to boot properly with the PC/TCP drivers. One of the most 
important changes is the commenting out of the Windows for Workgroups network 
driver and its replacement with the PC/TCP driver: 



network.drv=C:\PCTCP\PCTCPNET.DRV

For Windows for Workgroups 3.1, confirm that the SYSTEM.INI file has these three 
sections, with these commands shown: 

[boot]

network.drv=wfwnet.drv

[boot.description]

network.drv=Microsoft Windows for Workgroups (version 3.1)

[386Enh]

device=c:\pctcp\vpctcp.386

device=c:\pctcp\wfwftp.386

Windows for Workgroups 3.11 has a slightly different SYSTEM.INI. It should look like 
this: 

[boot]

network.drv=wfwnet.drv

[boot.description]

network.drv=Microsoft Windows Network (version 3.11)

[386Enh]

device=c:\pctcp\vpctcp.386

At the bottom of the Windows for Workgroups SYSTEM.INI file, PC/TCP sometimes adds a 
block of information that looks like this: 

[vpctcp]

; These option settings may be added to SYSTEM.INI, in a

;   new section "[vpctcp]".

; The next line tells VPCTCP how much copy space memory to 



request.

;   It is in units of kilobytes (x1024).  This value is only 
a bid,

;   as Windows may choose to reduce your allocation 
arbitrarily.

;   This value should be increased if using Windows 
applications which

;   call the PC/TCP DLL from another DLL; suggested value in 
such

;   instances is at least 28.

MinimumCopySpace=12

; The next line tells VPCTCP the segment (paragraph) number 
of the

;   beginning of memory reserved for devices, BIOS, and 
upper-

;   memory blocks (which could contain TSRs).  All calls 
below the

;   PSP of Windows or above this parameter are not processed 
by

;   the VxD but rather are passed-thru to the kernel 
untouched.

HiTSRFenceSegment=A000h

; eof

For most installations, this block can be left as it is. The comment lines (those beginning 
with a semicolon) are ignored by Windows, whereas the two variables established in 
these sections are used by PC/TCP. There is no need to delete this information. However, 
as the first note indicates, users of PC/TCP might have to increase the values to account 
for heavy usage. 

If the target system is running Windows 3.1 (not Windows for Workgroups) there are 
more changes to be made, because the SYSTEM.INI file and network-dependent 
initialization files do not have the proper format yet. To configure a Windows system, 
changes must be made to the PROGMAN.INI and SYSTEM.INI files. 



Windows 3.1's PROGMAN.INI file controls the startup of the Windows Program 
Manager. Normally, this is modified by the PC/TCP installation script, but if a manual 
installation has been performed, changes must be made with a text editor. The 
PROGMAN.INI file must have the following lines added: 

[Groups]

GROUP16 = C:\PCTCP\PCTCPDOS.GRP

GROUP17 = C:\PCTCP\PCTCPWIN.GRP

The numbers next to GROUP should be higher than any existing number, usually listed 
sequentially for convenience. In this example, the list of groups ran to number 15. 

Changes to the Windows 3.1 SYSTEM.INI file must be made in a few sections. In the 
[386Enh] section, add a line for the PC/TCP device driver: 

device=c:\pctcp\vpctcp.386

A [vpctcp] section must be added with the following entries: 

[vpctcp]

MinimumCopySpace=12

HiTSRFenceSegment=A000h

See the discussion of Windows for Workgroups SYSTEM.INI file for more information on 
these variables. 

Some additional entries might be necessary if the network driver is located in high 
memory, if there is a conflict with the default serial port IRQs, or if a Token Ring 
network is used. See the PC/TCP installation manual for complete change information 
in these cases. 

Windows for Workgroups using NetBIOS

As mentioned earlier, Windows for Workgroups can be set to use IP packets. This requires 
a NetBIOS driver for both Windows for Workgroups and PC/TCP. The architecture of 



such as system is shown in Figure 10.2. The Windows for Workgroups packets are sent 
through PC/TCP's NetBIOS and then into the normal PC/TCP stack. 

Figure 10.2. Windows for Workgroups with NetBIOS. 

To install Windows for Workgroups in this manner, Windows must first be set up to use 
the Microsoft LAN Manager option. This is usually a matter of selecting the LAN 
Manager option from the Network window if it is not already the default setting. 
(Consult the Windows for Workgroups documentation for more information.) 

The configuration files must also be changed to reflect the new architecture. The 
AUTOEXEC.BAT file has the network initiation command, the network kernel driver, 
and a NETBIOS command: 

C:\WINDOWS\NET START

C:\PCTCP\ETHDRV

C:\PCTCP\NETBIOS.COM

A NETBIND can be performed instead of a NET START command, although the latter is 
preferable. The NETBIOS command must come after the NETBIND or NET START 
command. 

The CONFIG.SYS file is similar to that seen earlier, with the same drivers. A sample 
CONFIG.SYS file for this type of architecture looks like this: 

DEVICE=C:\WINDOWS\PROTMAN.DOS /I:\C:\WINDOWS

DEVICE=C:\WINDOWS\EXP16.DOS

DEVICE=C:\PCTCP\DIS_PKT.GUP

This starts the protocol manager, the card driver, and the NDIS packet converter. This 
example uses the Intel EtherExpress 16 card driver. 

The PROTOCOL.INI file is the same as the previous example. A sample PROTOCOL.INI file 
for the Intel EtherExpress 16 card looks like this: 

[PKTDRV]

drivername=PKTDRV$
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bindings=MS$EE16

intvec=0x60

[MS$EE16]

DriverName=EXP16$

IOADDRESS=0x360

IRQ=11

IOCHRDY=Late

TRANSCEIVER=Thin Net (BNC/COAX)

Finally, the SYSTEM.INI file requires that the Windows for Workgroups network driver 
be used and not the PC/TCP network driver. This might require editing the SYSTEM.INI 
file, as noted earlier. The SYSTEM.INI file should contain the following lines: 

[boot]

network.drv=wfwnet.drv

[boot.description]

network.drv=Microsoft Windows for Workgroups (version 3.1)

[386Enh]

device=c:\pctcp\vpctcp.386

device=c:\pctcp\wfwftp.386

TimerCriticialSection=50000

The last line in the [386Enh] section might have to be added manually. The version 
number in the [boot.description] section changes to (version 3.11) with the later version 
of Windows for Workgroups. 

Testing PC/TCP

After making all the changes previously mentioned, the DOS machine is rebooted for 
testing. If no error messages are displayed when the new commands are executed, the 



system is ready for testing the TCP/IP protocol stack. The simplest test is to use ping to 
ensure that the TCP/IP software is talking to the local machine, then use it to test the 
remote machines. 

Machine name information for other machines hasn't yet been added to the PC/TCP DOS 
system, so IP addresses must be used with ping. The following is an example of a ping 
command for the local machine (147.120.0.11), the SCO UNIX server (147.120.0.1), and the 
Windows 95 machine (147.120.0.10) on the sample network (which has not yet been 
installed and hence should not communicate): 

C:\> ping 147.120.0.11

host responding, time = 25 ms

Debugging information for interface ifcust  Addr(6): 00 aa 
00 20 18 bf

interrupts: 0 (2 receive, 0 transmit)

packets received: 2, transmitted: 3

receive errors: 0, unknown types: 0

     runts: 0, aligns: 0, CRC: 0, parity: 0, overflow: 0

     too big: 0, out of buffers: 0, rcv timeout: 0, rcv 
reset: 0

transmit errors: 0

     collisions: 0, underflows: 0, timeouts: 0, resets: 0

     lost crs: 0, heartbeat failed: 0

ARP statistics:

arps received: 1 (0 requests, 1 replies)

     bad: opcodes: 0, hardware type: 0, protocol type: 0

arps transmitted: 2 (2 requests, 0 replies)

5 large buffers; 4 free now; minimum of 3 free

5 small buffers; 5 free now; minimum of 4 free

C:\>



C:\> ping 147.120.0.1

host responding, time = 25 ms

Debugging information for interface ifcust  Addr(6): 00 aa 
00 20 18 bf

interrupts: 0 (5 receive, 0 transmit)

packets received: 5, transmitted: 6

receive errors: 0, unknown types: 0

     runts: 0, aligns: 0, CRC: 0, parity: 0, overflow: 0

     too big: 0, out of buffers: 0, rcv timeout: 0, rcv 
reset: 0

transmit errors: 0

     collisions: 0, underflows: 0, timeouts: 0, resets: 0

     lost crs: 0, heartbeat failed: 0

ARP statistics:

arps received: 2 (0 requests, 2 replies)

     bad: opcodes: 0, hardware type: 0, protocol type: 0

arps transmitted: 3 (3 requests, 0 replies)

5 large buffers; 4 free now; minimum of 3 free

5 small buffers; 5 free now; minimum of 4 free

C:\>

C:\> ping 147.120.0.10

ping failed: Host unreachable: ARP failed

Debugging information for interface ifcust  Addr(6): 00 aa 
00 20 18 bf

interrupts: 0 (5 receive, 0 transmit)

packets received: 5, transmitted: 7

receive errors: 0, unknown types: 0



     runts: 0, aligns: 0, CRC: 0, parity: 0, overflow: 0

     too big: 0, out of buffers: 0, rcv timeout: 0, rcv 
reset: 0

transmit errors: 0

     collisions: 0, underflows: 0, timeouts: 0, resets: 0

     lost crs: 0, heartbeat failed: 0

ARP statistics:

arps received: 2 (0 requests, 2 replies)

     bad: opcodes: 0, hardware type: 0, protocol type: 0

arps transmitted: 4 (4 requests, 0 replies)

5 large buffers; 4 free now; minimum of 3 free

5 small buffers; 5 free now; minimum of 4 free

The message ping failed: Host unreachable for the last attempt is expected. PC/TCP 
provides the user with diagnostic messages with each ping command. To suppress these 
messages and simply get a success or fail message, the -z option can be used: 

C:\> ping -z 147.120.0.11

host responding, time = 25 ms

C:\>

C:\> ping -z 147.120.0.1

host responding, time = 25 ms

C:\>

C:\> ping -z 147.120.0.10

ping failed: Host unreachable: ARP failed

If the ping command is not successful with the local address, either the network 
interface card is configured incorrectly or the software installation has incorrect 
parameters. Check the network card for the correct IRQ and memory settings and then 
check the cable to ensure that it is connected properly and network terminators are in 



place. The software must have the correct drivers loaded, as well as the machine name, 
IP address, and similar information. 

If the local machine responds but the remote machines do not, check the network 
connections. Try ping from one of the remote machines to ensure that the DOS machine 
can be reached by the other machines. Experience has shown that PC-based TCP/IP 
implementations can be quirky when booting. It is not unusual to have a ping command 
fail four or five times and then start working properly. Repeat the commands several 
times, waiting a few seconds between each attempt. 

Once the machines can successfully respond to a ping request, try ftp or telnet from the 
DOS-based machine. An ftp attempt to log onto the SCO UNIX machine is shown here: 

FTP Software PC/TCP File Transfer Program 2.31    01/07/94 
12:38

Copyright  1986-1993 by FTP Software, Inc.  All rights 
reserved.

FTP Trying....Open

220 tpci.tpci.com FTP Server (Version 5.60 #1) ready.

Userid for logging in on 147.120.0.1? tparker

331 Password required for tparker.

Password for logging in as tparker on 147.120.0.1? abcdefg

230 User tparker logged in.

ftp:147.120.0.1> ls

.profile

.lastlogin

.odtpref

trash

Initial.dt

XDesktop3

Transferred 265 bytes in 0 seconds

226 Transfer complete.



ftp:147.120.0.1> exit

This session, which displayed the listing of files on the SCO UNIX server, shows that the 
ftp command worked properly. The FTP session was closed with the command exit. 

Following the DOS-based test, start Windows (if it was installed) and ensure that the 
applications within the PC/TCP Applications program group are available and working. 
If problems are encountered with Windows starting, it is likely that an error was made 
in the SYSTEM.INI file. Check the previous instructions for the correct configuration. 

After all that, the ftp Software PC/TCP system is installed and configured properly. 
The DOS machine can now be used for TCP/IP applications such as ftp and telnet. If some 
of the more powerful protocol features were installed, they are also usable. The DOS-
based machine installation is now completed. The PC/TCP documentation contains 
instructions for using the system, as well as fine-tuning the kernel. It also helps users 
create gateways, routers, mail servers, and several other TCP/IP-related features. 

Windows-Based TCP/IP: NetManage's Chameleon

NetManage produces a line of TCP/IP-based software specifically for Windows, Windows 
95, and Windows for Workgroups. These applications are designed to provide full access 
to TCP/IP utilities through the Windows environment. NetManage's line of products 
includes a basic TCP/IP stack (called Newt), as well as full TCP/IP application packages 
in several forms, all called Chameleon. The system is also available for Windows NT. 
You are installing Chameleon on a Windows for Workgroups 3.11 machine on the sample 
network. 

Chameleon uses the standard NDIS (Network Device Interface Specification) or the ODI 
(Open Data Link Interface) for communicating with the network interface card. This 
enables any card that uses either NDIS or ODI to be used with Chameleon. 

Prior to installation of Chameleon, the same steps are performed as for the DOS-based 
TCP/IP package. The network interface card must be installed with suitable IRQ and 
memory address settings. If Chameleon is being added to an existing Windows for 
Workgroups system, the network card should already be installed and properly 
configured. The same information is required as for all TCP/IP installations: the host 
name, IP address, broadcast mask, subnetwork mask, and any information about gateways 
or routers that needs to be included. 

The version of ChameleonNFS used for the sample network had its installation 
information slightly jumbled because of updates to both Chameleon and Windows for 



Workgroups. The information supplied today applies to Windows for Workgroups 3.1 and 
3.11 and ChameleonNFS version 4.0, although other versions should be similar. 

Installing Chameleon

Chameleon can be installed over a fully functioning Windows or Windows for 
Workgroups system. If Windows for Workgroups is used, ensure that the network 
performs properly (if possible) when talking to other NetBEUI-compatible machines. In 
this case, that's not possible because the sample network uses only TCP/IP. 

The installation procedure for Chameleon is simple. From the Program Manager's File 
menu, select Run, then execute the SETUP.EXE program from the first Chameleon disk. 
As with most Windows applications, this starts the installation program. 

The changes made to the system files might cause problems, affecting Windows' 
capability to boot. Before installing the Chameleon software, make copies of the 
AUTOEXEC.BAT, CONFIG.SYS, PROTOCOL.INI, WIN.INI, and SYSTEM.INI files. If 
problems are encountered, these files can return the system to its original state. You 
should consider making a full system backup before any major changes to software, of 
course. 

The Chameleon installation program requires a lengthy serial number and an 
activation key to ensure that there is only one such version on a network (this locks 
out multiple installations using the same serial number and activation key.) The 
installation script prompts for the distribution disks in order and copies all the 
necessary files. 

Following the installation process, Chameleon builds the program group with the 
Chameleon applications included. The ChameleonNFS program group is shown in Figure 
10.3. After creating the program group, Chameleon starts a customization screen that 
lets you specify your IP address, host name, network mask, and broadcast address. Save 
this information and then exit out of Windows to the DOS prompt to complete the check 
of the installation. 

Figure 10.3. The Chameleon program group. 

Because of the different installation variables encountered with different network 
drivers, it is advisable to check the following configuration files manually: 

AUTOEXEC.BAT 
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CONFIG.SYS 

PROTOCOL.INI 

SYSTEM.INI 

The following sections discuss each of these files in more detail. If the files do not have 
the information specified in them, add them with a text editor. Failure to check the files 
properly can result in Windows being unable to boot properly. If this happens, copy the 
backup files in place of the newly modified files, restart Windows, and reinstall or 
reconfigure as necessary. 

The AUTOEXEC.BAT File

The changes to the AUTOEXEC.BAT file necessary to enable Chameleon to run are the 
inclusion of the installation directory in the PATH environment variable and a 
network startup command. If Chameleon is installed on a Windows for Workgroups 
system, the network startup command should already exist. 

The PATH environment variable must be modified to include the Chameleon installation 
directory, which by default is C:\NETMANAG. An existing PATH statement can be 
altered, or a new line can be added below the existing PATH statement that looks like 
this: 

PATH=C:\NETMANAG;%PATH%

Of course, the correct drive and subdirectory should be substituted. This chapter 
assumes default values throughout. 

The command 

C:\WINDOWS\NET START

is already in the AUTOEXEC.BAT file if a Windows for Workgroups system is used (either 
version 3.1 or 3.11). If Chameleon is installed on a Windows (not Windows for 
Workgroups) system, the NETBIND command included with the distribution software 
should be called as well: 



C:\NETMANAG\NETBIND

Chameleon might install a SHARE command in the AUTOEXEC.BAT file if one does not 
exist. If one doesn't exist, it is advisable to add it if others can access the machine. 
SHARE is a DOS utility that activates file-sharing and record-locking. If other 
machines will be accessing the machine, SHARE is necessary to prevent error messages 
and potential system freezes when file conflicts occur. 

The completed AUTOEXEC.BAT file looks like this for a Windows for Workgroups 3.1 or 
3.11 installation: 

PATH=C:\NETMANAG;%PATH%

C:\WINDOWS\NET START

SHARE

and like this for a Windows installation: 

PATH=C:\NETMANAG;%PATH%

C:\NETMANAG\NETBIND

SHARE

If the NET START or NETBIND command is not executed properly, Windows displays an 
error message when it loads. In some cases, Windows can lock up while it tries to access 
the network drivers. 

The CONFIG.SYS File

The CONFIG.SYS file might be considerably different for each installation. The HIMEM 
memory device driver is required, and the SMARTDRIVE caching system is recommended. 
All installations should have adequate values for the FILES and BUFFERS settings, 
which are normally set by Windows when it is installed. The CONFIG.SYS should have 
these values as a minimum: 

BUFFERS=30



FILES=30

LASTDRIVE=Z

STACKS=9,256

This creates enough file and buffer settings to enable multiple files to be open at once. 
Higher values are better, although there is a trade-off of efficiency once the values 
exceed a certain value (depending on the amount of RAM in a system). The LASTDRIVE 
setting enables more drives to be open than are physically connected to the system. This 
is necessary when remote drives are mounted, either through Windows for Workgroups 
or Chameleon. 

For a Windows or Windows for Workgroups 3.1 system, Chameleon adds the following 
commands to the CONFIG.SYS file: 

DEVICE=C:\NETMANAG\PROTMAN.DOS /I:C:\NETMANAG

DEVICE=C:\NETMANAG\EXP16.DOS

DEVICE=C:\NETMANAG\NETMANAG.DOS

These load the device drivers for the protocol manager, the network interface card, 
and the specific protocol for Chameleon. The protocol manager and network interface 
card device drivers were discussed in the DOS section earlier today. 

Windows for Workgroups 3.11 usually has a command in the CONFIG.SYS file that looks 
like this: 

DEVICE=C:\WINDOWS\IFSHLP.SYS

This automatically loads all the necessary drivers. In some cases, Chameleon adds the 
command for the Windows for Workgroups 3.1 device drivers to the end of the 
CONFIG.SYS file, even if the IFSHLP.SYS driver exists. Comment out the added device 
drivers and try the system without them. The IFSHLP.SYS device driver should be 
sufficient. 

The SYSTEM.INI File

The Windows SYSTEM.INI file requires a few changes to ensure that Chameleon is 



loaded properly. These should be effected by the installation script, but check the lines 
carefully anyway. 

The [boot] section of the SYSTEM.INI file should have the following two lines: 

[boot]

shell=progman.exe

network.drv=C:\NETMANAG\MULT400.DRV

The shell line might be different if the system uses a replacement program manager 
(such as Central Point PC Tools for Windows Desktop Manager). The MULT400 driver 
supports several networks at a time. The order of these lines in the SYSTEM.INI file is 
not important, as long as they appear in the proper section. The MULT400 driver takes 
care of loading all the necessary drivers for each network. Windows for Workgroups 
should have this line 

network.drv=wfwnet.drv

either commented out with a semicolon at the start of the line or removed entirely. The 
WFWNET driver is the Windows for Workgroups network driver, which must be replaced 
by MULT400. 

The [boot.description] section of the SYSTEM.INI file is changed to 

[boot.description]

network.drv=NetManage ChameleonNFS

or a similar line if another NetManage product is installed. 

The [386Enh] section has several changes made. These are as follows: 

[386Enh]

device=C:\netmanag\nmredir.386

network=*vnetbios,*vwc,vnetsup.386,vredir.386,vserver.386

netmisc=ndis.386,ndis2sup.386



netcard=

transport=nwlink.386,nwnblink.386,netbeui.386

InDOSPolling=FALSE

The order of the lines in the section doesn't matter. They load the correct network 
device drivers into the Windows kernel. 

Finally, the [network drivers] section should have these lines: 

[network drivers]

netcard=elnk3.dos

devdir=C:\WINDOWS

LoadRMDrivers=YES

transport=ndishlp.sys,c:\netmanag\netmanag.dos,*netbeui

The netcard line changes depending on the network interface card used. The 
LoadRMDrivers line should be changed from the Windows for Workgroups default 
value of NO to YES. 

The PROTOCOL.INI File

The PROTOCOL.INI file for a Windows for Workgroups installation doesn't require 
many changes. The driver information should already exist. A new section added by 
Chameleon should look like this: 

[NETMANAGE]

DRIVERNAME=netmng$

BINDINGS=MS$ELNK3

The BINDINGS line changes depending on the network interface card. It is easiest to 
copy the line from another section of the PROTOCOL.INI file. 



Configuring Chameleon

Once Chameleon has been installed and the startup files checked for proper content, 
you can configure the software for the sample machine. This is done through the 
Chameleon CUSTOM application. When started, CUSTOM displays a status screen as 
shown in Figure 10.4. 

Figure 10.4. The Chameleon Custom screen. 

If the installation routine didn't add the machine's name and IP address to the Custom 
screen, use the Setup menu item to select the different aspects of the configuration 
that must be specified. You should provide a machine name, IP address, subnet mask, and 
domain name, as well as the interface if not already added (Ethernet, in this case). 

To enter the names of the other machines on the network and their IP addresses, select 
the Services menu Host Table option to display the Host Table dialog box. To add the 
other machines on the sample network, enter a name in the top portion of the window in 
the field titled Official Name and click the Add button. This shows a window for the IP 
address, which should be filled in completely. Then click OK. The IP address and the 
machine name are now entered into the host table. This window is shown in Figure 10.5 
with the address for the machine merlin added. If a machine has more than one name, the 
different names can be added as aliases through this screen, as well. 

Figure 10.5. Chameleon's Host Table IP Address dialog box. 

Testing Chameleon

After the changes to the four configuration files are completed, reboot the system and 
start Windows. Watch for error messages as the Chameleon lines in the CONFIG.SYS and 
AUTOEXEC.BAT files are executed. If Windows for Workgroups was installed and 
working prior to installing Chameleon, there should not be any errors. 

The easiest way to test the new TCP/IP system is to use the ping utility within the 
Chameleon program group. When selected, it displays a small dialog box. Select the 
Start option, which displays another dialog box waiting for a machine name. Enter the 
name of the local machine. This is shown in Figure 10.6 for the sample network Windows 
machine pepper. 

Figure 10.6. Using ping to test the local host. 
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The ping window should show a successful result. This is indicated by a message showing 
the number of bytes received, as well as time information. A sample output from a 
successful attempt to ping the local machine is shown in Figure 10.7. 

Figure 10.7. ping diagnostic messages. 

If the ping attempt is not successful, Chameleon displays a message about the network 
drivers not installed or about unreachable hosts. Upon receipt of such a message, check 
the network card settings and all the configuration information through the CUSTOM 
program. 

The next step is to use ping to send to another machine on the network. Figure 10.8 
shows the output from a ping attempt on freya, the sample network's Linux server and to 
whitney, the Windows 95 machine that is not booted (and hence should fail). The system 
timed out on the whitney attempt, as you would expect. 

Figure 10.8. ping across a network. 

If the ping attempts across the network fail on all machines, the problem is likely with 
the configuration. Check all the configuration information (as previously noted), as 
well as the network cables and cards. Make sure the machines to be pinged are up and 
running TCP/IP. 

If the network is operating properly, try the ftp and telnet applications from the 
Chameleon program group. Full instructions for these utilities are in the 
documentation. As long as a host table entry has been created and ping succeeded, the 
other utilities should function properly. Both provide a graphical interface that 
Windows users will find familiar, instead of the character-based line interface found 
with DOS. To configure more elaborate functions within Chameleon (such as SNMP, 
mail, and Gateway routing), consult the Chameleon documentation. 

Configuring Windows 95 for TCP/IP

The final client on the sample network that requires configuration is the machine 
called whitney, with IP address 147.120.0.10. Windows 95 is the easiest of the three 
clients to configure because everything you need to set up TCP/IP under Windows 95 is 
included with the software distribution. Windows 95 is configured by default to use 
NetWare IPX/SPX as the network protocol, but switching to TCP/IP is quite easy. 

Begin the Windows 95 configuration process by installing the network adapter card. In 
some cases, when you restart Windows 95 the operating system automatically recognizes 
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the addition of the network card and proceeds to the configuration routines for you. In 
many cases, though, you have to instruct Windows 95 to look for the network adapter 
card. 

To install a network adapter card, open the Windows 95 Control Panel and double-
click the Add New Hardware icon. This calls the Add New Hardware Wizard. After you 
click the Next button on the introductory dialog, Windows 95 gives you the option of 
having the operating system try to detect the new hardware automatically. 

It is usually best to let Windows 95 try to find the network adapter by itself, especially 
if the new card is a plug-and-play type. If Windows 95 can identify the hardware 
automatically, it saves you having to provide configuration information. If you want 
Windows 95 to go ahead and look for the network adapter, select the Yes button on 
this dialog (the default value) and click the Next button. Windows 95 begins searching 
the system for new hardware. If Windows 95 detects a new network card, it displays a 
screen showing the parameters it detected and lets you confirm the selection. After a 
reboot, the network card should be properly recognized and active. 

If Windows 95 didn't detect the network adapter, you have to install and configure it 
manually. Windows 95 shows a dialog like the one in Figure 10.9. Clicking the Next 
button displays the dialog shown in Figure 10.10, which asks for the type of new 
hardware device you are installing. In this case, you double-click the Network adapters 
option. 

Figure 10.9. This dialog is displayed if Windows 95 couldn't detect a new network 
adapter card. 

Figure 10.10. This dialog asks for the type of hardware you are installing. 

The next dialog to appear shows a list of network adapter card manufacturers on the 
left side, and a more detailed list of network card models from the selected 
manufacturer on the right. Select the proper manufacturer of the network adapter 
card in the list at left by single-clicking the manufacturer's name, then select the name 
in the right-side list that matches the specific card. 

You must be careful that you match the name of the adapter card exactly with the list, 
because some drivers do not work on other cards from the same manufacturer. If you 
select the wrong adapter card, you won't cause any damage to either the card or 
Windows 95, but the network will not be found properly by Windows 95. If you can't 
find the particular model name of the network adapter card you are using, but you have 
a driver supplied on disk, use the Have Disk button to read the driver into Windows 95. 

Once you have selected the proper network card name, Windows 95 displays a window 
with configuration information shown in it. This dialog is shown in Figure 10.11. The 
amount of configuration information shown in this dialog, and the settings it shows, are 
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different for each network adapter card. 

Figure 10.11. Windows 95 uses this dialog to ask for the configuration settings of 
the network card. 

If the network adapter was found by autodetection, the settings shown in this dialog 
are the ones Windows 95 assumed are correct for the card. If Windows 95 couldn't find 
the network card, the settings shown are the default values usually used by the 
manufacturer. Check the documentation supplied with the network adapter card to 
confirm the settings. After you confirm that the displayed values are correct, Windows 
95 installs the software necessary to drive the network adapter card. 

Installing TCP/IP

You can install the TCP/IP drivers included with Windows 95 by displaying the Network 
dialog. Click the Network icon in the Control Panel to display the Network dialog 
shown in Figure 10.12. The dialog should show a few basic entries created when Windows 
95 installed itself, as well as the network hardware card. By default, the NetBEUI or 
NetWare (IPX) protocols might already be loaded. 

Figure 10.12. The Network window shows all configured hardware and protocols. 

To add the TCP/IP protocol drivers to Windows 95, select the Add button below the list 
of installed components to display the Select Network Component Type dialog shown in 
Figure 10.13. This window asks for the type of component (adapter card, protocol, 
service, or client) you want to install. Because you want to install the TCP/IP protocol 
drivers, choose Protocol. The Select Network Protocol dialog, shown in Figure 10.14, is 
displayed. 

Figure 10.13. The Select Network Component Type dialog lets you add a protocol, 
client, service, or adapter card. 

Figure 10.14. The Select Network Protocol dialog lets you choose the type of 
protocol to add. 

From the Select Network Protocol window, select Microsoft in the left scroll list, 
then move to the right window, which lists all the Microsoft protocols supplied with 
Windows 95. Choose the TCP/IP entry. You are returned to the Network dialog, and 
TCP/IP is listed as a supported protocol. 

To start the configuration process, either double-click the TCP/IP protocol entry in the 
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Network dialog list, or select the TCP/IP protocol entry and click the Properties 
window. The TCP/IP Properties dialog appears, as shown in Figure 10.15. 

Figure 10.15. The TCP/IP Properties dialog has six pages of configuration 
information. 

From the TCP/IP Properties dialog, six pages of information are available by choosing one 
of the tabs across the top of the dialog. For most installations you have to supply only 
a small part of this information. You can start with the IP Address page, which is the 
first page shown whenever the TCP/IP Properties window is displayed. Enter the IP 
address and subnet mask in the spaces provided, making sure to keep the four parts of the 
dotted-quad notation separate. 

Some larger corporate networks are set up to assign IP 
addresses to connecting clients automatically using a special 
protocol. This protocol, called Dynamic Host Configuration 
Protocol (DHCP) servers, is usually used for machines that 
connect to a TCP/IP network only occasionally. If your 
network uses DHCP, you can select the first button on the IP 
Address page and let Windows 95 obtain your IP address and 
subnet mask for you. Most networks do not use DHCP. 

Next, you move to the Advanced page of the TCP/IP Properties dialog by selecting the 
Advanced tab at the top of the dialog. This dialog lets you specify that TCP/IP is the 
default protocol used by the Windows 95 machine by clicking the option at the bottom 
of the page, as shown in Figure 10.16. If your Windows 95 system is attached to a TCP/IP 
network and uses TCP/IP most of the time, make sure you select this option; otherwise, 
Window 95 tries to use NetBIOS or IPX/SPX on the TCP/IP network. 

Figure 10.16. Select the default option from the Advanced page of the TCP/IP 
Properties dialog. 

For many simple TCP/IP networks, that's all the information you need to supply. 
Windows 95 now loads the proper drivers into the operating system, using the values 
supplied for the IP address and subnet mask. After the software has been properly 
loaded, Windows 95 must be restarted to make the TCP/IP drivers effective. 

Further TCP/IP Configuration
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Some TCP/IP systems require extra configuration to provide Windows 95 with the name of 
the servers, gateways, or other details. You can make many of these configuration steps 
at any time, but some services might not be available to you until you do. All of these 
changes are made through the TCP/IP Properties dialog used to set the IP address and 
subnet mask. 

The WINS Configuration page of the TCP/IP Properties window is used to instruct your 
Windows 95 system how to talk to a Windows Internet Naming Service (WINS) server. 
WINS lets you use the NetBIOS protocol on a TCP/IP network. Most networks don't use 
WINS, so you can probably ignore this page completely unless you know you will need 
to use WINS on your network. If WINS is required on your network, enter the IP address 
of the primary (and secondary, if used) WINS servers, as well as the Scope ID. If WINS is 
not used on your network, make sure the Disable WINS Resolution option is selected. 

The Gateway page lets you specify where your network's gateways are. Gateways are 
used to connect to other networks, including the Internet. If your network uses a 
gateway, enter the IP address of the primary network gateway machine and click the 
Add button. You can enter many gateways into Windows 95, but you should always 
provide the primary gateway IP address first (because Windows 95 searches the list of 
gateways in order). 

The DNS Configuration page must be completed if your network uses the Domain Name 
System (DNS). DNS performs a conversion between an IP address and a symbolic name. 
DNS requires a special network configuration and server, so small networks are 
unlikely to use DNS. If your network is running DNS, you can enter your machine's 
symbolic name, the domain name (the name of your workgroup or entire company), and 
the IP address of your DNS server on this page. After Windows 95 has connected to the 
DNS server and told it your IP address and symbolic name, other users of the network 
can connect to your machine using your symbolic name. Similarly, if you know the 
symbolic name of a remote machine, you can use that to connect to it instead of the IP 
address. 

The final page of the TCP/IP Properties window is the Bindings page. This page lists all 
the network components that use the TCP/IP protocol. If you have installed other 
networking protocols on your Windows 95 system, there might be more entries in the 
Bindings list. Select only those that use the TCP/IP protocol. Minimizing the number of 
bindings for each protocol helps improve the efficiency of the Windows 95 networking 
software. 

Testing TCP/IP



Once you have installed the network card and software, you can test the new TCP/IP 
protocol. The best utility for a quick check of your TCP/IP network connection is ping. 
The ping utility supplied with Windows 95 is a DOS application, not Windows 95, so it 
should be launched in a DOS window. It usually resides in the same directory as 
Windows 95 files (usually \windows). 

To use ping, enter the name or address after the ping command at the DOS prompt. The 
ping utility then sends and receives packets of information. If messages such as Bad IP 
Address, Request Timed out, or Unknown host are displayed, ping can't connect or 
resolve the name or IP address you supplied. 

At this point, if you successfully sent and received packets, all is well with the TCP/IP 
connection. If ping displayed error messages or couldn't send and receive packets over 
the network, you should verify that the IP address is valid. If it is, try another machine 
on the network to ping the Windows 95 machine. If you can't, then the network adapter 
or protocol on the Windows 95 machine is not loaded properly. 

Winsock

For some Windows and Windows 95 users, Winsock is the easiest method to get into 
TCP/IP because it is available from many public domain, BBS, and online service sites. 
There are several versions of Winsock, some of which are public domain or shareware. 
We will look at two versions of Winsock, one for Windows 3.X and another for Windows 
95. We have chosen the popular Trumpet Winsock implementations for both operating 
systems because they are shareware, readily available, and well supported. 

Winsock is short for Windows Sockets, originally developed by Microsoft. Released in 
1993, Windows Sockets is an interface for network programming in the Windows 
environment. Microsoft has published the specifications for Windows Sockets, hence 
making it an open application programming interface (API). The Winsock API (called 
WSA) is a library of function calls, data structures, and programming procedures that 
provide this standardized interface for applications. The second release of Winsock, 
called Winsock version 2, was released in mid 1995. 

Trumpet Winsock

Trumpet Winsock is a shareware implementation of Winsock produced by Trumpet 
Software International. Trumpet Winsock is available for Windows 3.X and Windows 95 



systems. Registration of the Winsock package, developed in Australia, is $25 US. Trumpet 
Winsock lets you use several different protocols including PPP and SLIP for connection 
to the Internet or remote networks, direct connection using TCP/IP, and the BOOTP 
protocol. Trumpet Winsock allows dynamic IP addressing, which is necessary with many 
Internet Service Providers. 

The Trumpet Winsock files are usually provided in an archive ZIP file, and should be 
extracted into a new subdirectory on your system. The primary files in the Trumpet 
Winsock distribution are 

●     WINSOCK.DLL: The primary protocol stack for Winsock 

●     TCPMAN.EXE: Manages the communications between WINSOCK.DLL and the 
network 

●     TRUMPWSK.INI: Contains Winsock variable settings 

●     HOSTS: A list of hosts that Winsock is aware of 

●     SERVICES: A list of services supported by Winsock 

●     PROTOCOL: A list of protocols supported by Winsock 

There are a number of sample configuration files included in the archive, as well as 
utilities such as PING and HOP. Some of the files in the Winsock archive, such as HOSTS, 
PROTOCOL, and SERVICES, mirror UNIX files of the same name. 

Installing Trumpet Winsock

The installation process for Trumpet Winsock is the same whether you are using 
SLIP/PPP for connection or a packet driver for LAN-based operations. Begin the 
installation by adding the directory holding the Trumpet Winsock files to your PATH. 
The files should, of course, be extracted from the ZIP file they are usually supplied in. 
After the path has been modified, reboot your machine to effect the change. 

You can create a Windows program group for the Trumpet Winsock system by adding a 
new program group from the Program Manager menus. (Select File menu, the New menu 
item, and then Program Group.) Create a title, such as Trumpet Winsock. for the new 
program group. 

Next, create a Program Icon for the TCPMAN program (the primary Trumpet Winsock 
program) by either creating a new Program Item from the Program Manager or opening 



the File Manager and dragging the TCPMAN.EXE entry from its directory to the 
Trumpet Winsock program group. Windows will prompt you for any information it needs. 
The program icon is read from the distribution files if the path is properly set. 

To test the installation of the path and the Windows icon, click the TCPMAN icon. If 
you receive error messages, either the PATH is not set properly or the program icon has 
not been properly defined. Because you are primarily interested in using Winsock on a 
TCP/IP network, ignore configuring PPP and SLIP and concentrate on the TCP/IP stack. 

Configuring the TCP/IP Packet Driver

Trumpet Winsock relies on a program called WINPKT to provide TCP/IP packet 
capabilities under Windows. After you create a program group for Winsock, you need to 
set up the packet driver information in the network files. 

You will need a packet driver for your system, which is not included with most Trumpet 
Winsock distributions. In many cases, the network card vendor includes a disk with a 
packet driver on it. If not, one of the best sources for a packet driver is the Crynwr 
Packet Driver collection, a library of different packet drivers available from many 
online, BBS, FTP, and WWW sites. The packet driver specifications are added to your 
network startup batch file, usually AUTOEXEC.BAT for DOS-based systems. 

To obtain a Crynwr packet driver, use a Web browser to 
connect to http://www.crynwr.com. There are several dozen 
public domain drivers available from this site. 

The process for configuring Trumpet Winsock for LAN operation is quite simple. Set the 
IRQ and I/O address of the packet driver and add the packet driver to your system. A 
typical entry in the network batch file looks like this: 

ne2000 0x60 2 0x300

WINPKT 0x60

This sets the network to use an NE2000 (Novell) type card, with I/O address of 300H, IRQ 
of 2, and a vector of 60. Several configurations are usually provided with the Trumpet 
Winsock distribution, although it is easy to derive your own from the network interface 
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card manufacturer's documentation. 

To set up Trumpet Winsock for a packet driver, use the Setup screen that appears when 
TCPMAN is first launched, or use the menus within TCPMAN to display the setup screen. 
Deselect both Internal SLIP and Internal PPP settings. If either of them are checked, 
the packet driver will not launch properly. 

Enter the IP address, netmask, name server IP address, and domain name information. You 
may also modify the entries for Demand Load Time-out, MTU, TCP RWIN, TCP MSS, and 
TCP RTO MAX. See the section on SLIP/PPP configuration above for more details on any 
of these settings. The default values used for a packet driver are different than those 
for a SLIP/PPP setting. If you are using BOOTP or RARP to determine your machine IP 
address, enter the proper protocol name in the IP address field. 

The Packet Vector field should be set to the vector you used in the network card 
description, or you can leave it as 00 to let Trumpet Winsock search for the packet 
driver. After the configuration is saved, restart TCPMAN and the network will be 
available (if the configuration and packet drivers are properly set). A ping command or 
similar utility will verify the packet driver operation is correct. 

Summary

Today you learned how to install and configure three PC-based systems: one for DOS 
and two specifically for Windows versions. They are now connected to the sample 
network, and files can be transferred between the machines quickly and easily. The DOS 
machines can also run Windows for Workgroups piggy-backed on the TCP/IP network. 

Adding other machines usually follows the same procedure. For example, to add a 
Macintosh running Mac TCP/IP, follow the installation guide to install and configure 
the software, and then use ping to verify that everything is working correctly. 
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Domain Name Service

TCP/IP uses a 32-bit address to route a datagram to a destination. It is useful to forget 
these 32-bit addresses and use common names instead, because names are much easier to 
remember. There are several methods used for this. The most common is examined on Day 
7, "TCP/IP Configuration and Administration Basics," employing an ASCII file on the 
sending machine that had names and corresponding addresses (/etc/hosts on a UNIX 
device). One major limitation to this system is that the machine can route only to other 
machines that have an entry in this file, which can be impossible to maintain when there 
are many target machines or you want to access all the devices on your network. 

Another approach is to off-load the address resolution to another process that acts 



like a directory service. There are two such schemes in common use today: Domain Name 
Service (DNS) and Network Information Service (NIS), which is now part of NFS. Today I 
look at DNS in more detail. On Day 12, "NFS and NIS," I examine NFS in depth. 

Also today I look at the BOOTP protocol, a system that is becoming widely adopted as 
diskless workstations and client/server systems become more common. BOOTP relies on 
TCP/IP. Anyone working with TCP/IP can eventually expect to run across the BOOTP 
protocol, so an explanation of it is useful at this stage. 

Finally, the day closes with a quick look at the Network Time Protocol (NTP), which is 
used to ensure synchronization of timestamps between machines. 

Domain Name Service (DNS)

A symbolic name is a character string that is used to identify a machine. A symbolic name 
can be straightforward (bills_machine or tpci_server1) or more complex, as is often the 
case in large organizations where the name identifies the type of machine and its 
location (such as hpws510, where hpws identifies an HP workstation on the fifth floor, 
room 10). 

When sending information to remote machines, IP addresses or Internet addresses must be 
used. Instead of requiring the user to memorize the remote machine's numbers, it is 
common to use a symbolic name. After all, a simple name is much easier to remember than 
a 32-bit Internet address. 

As you saw earlier in this book, the conversion from a symbolic name to an actual IP 
address is usually performed within the sending machine, using a file such as UNIX's 
/etc/hosts file. This type of approach works well within a small network, where a 
limited number of destination machines are involved. When dealing with the entire 
Internet, however, it is unreasonable to expect an ASCII file to contain all possible 
symbolic names and their addresses. 

The sheer size of a file required to hold all possible symbolic domain names and their 
corresponding unique network addresses is not the only problem. Large networks tend 
to change constantly, especially on an internetwork the size of the Internet. Hundreds 
of additions and modifications to existing entries must be performed daily. The time 
required to update each machine (or even selected gateways to autonomous networks) 
on the internetwork would be huge. 

The solution to the problem is to offer a method of moving the management of the 
lookup tables away from the Network Information Center (NIC), which governs the 
Internet, and toward the participants and their autonomous networks in such a manner 



that the load on the network is small but flexibility is not compromised. This is what 
the Domain Name Service (DNS) does. DNS is sometimes also called the Internet 
directory service, although the name is somewhat of a misnomer. 

UNIX implements DNS through a daemon called named, which runs on a name server, a 
machine that handles the resolution of symbolic names using DNS methods. Part of the 
system is a library of functions that can be used in applications to perform queries on 
the name server. This query routine is called the resolver or name resolver and can reside 
on another machine. The name server and resolver are examined in more detail shortly. 

DNS Structure

The Domain Name Service, as its name implies, works by dividing the internetwork into a 
set of domains, or networks, that can be further divided into subdomains. This structure 
resembles a tree, as shown in Figure 11.1, using some arbitrarily chosen domain names. 
The first set of domains is called the top-level domains. There are six top-level domains in 
regular use: 

●     ARPA: For Internet-specific organizations 

●     COM: For commercial enterprises 

●     EDU: For educational organizations 

●     GOV: For governmental bodies 

●     MIL: For military organizations 

●     ORG: For noncommercial organizations 

Figure 11.1. The Internet domain structure. 

In addition to these top-level domains, there are dedicated top-level domains for each 
country that is connected. These are usually identified by a short form of the country's 
name, such as .ca for Canada and .uk for the United Kingdom. These country top-level 
domains are usually left off diagrams of the Internet structure for convenience 
(otherwise there would be hundreds of top-level domains). The domain breakdown is 
sometimes repeated beneath the country domain, so there could be a .com extension 
coupled with .ca to show a Canadian commercial domain, or an .edu with .uk for a British 
university. 

Beneath the top-level domains is another level for the individual organizations within 
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each top-level domain. The domain names are all registered with the Network 
Information Center (NIC) and are unique to the network. Usually the names are 
representative of the company or organization, but a few "cute" names do work their 
way in (usually because of historical reasons). 

There are two ways to name a target. If the target is on the internetwork, the absolute 
name is used. The absolute name is unique and unambiguous, specifying the domain of the 
target machine. A relative name can be used either within the local domain, where the 
name server knows that the target is within the domain and hence doesn't need to route 
the datagram onto the internetwork, or when the relative name is known by the name 
server and can be expanded and routed correctly. 

The Name Server

Each DNS Name Server manages a distinct area of a network (or an entire domain, if the 
network is small). The set of machines managed by the name server is called a zone. 
Several zones can be managed by one name server. Almost every zone has a designated 
secondary or backup name server, with the two (primary and secondary) name servers 
holding duplicate information. The name servers within a zone communicate using a zone 
transfer protocol. 

DNS operates by having a set of nested zones. Each name server communicates with the 
one above it (and, if there is one, the one below it). Each zone has at least one name 
server responsible for knowing the address information for each machine within that 
zone. Each name server also knows the address of at least one other name server. 
Messages between name servers usually use the User Datagram Protocol (UDP) because 
its connectionless method provides for better performance. However, TCP is used for 
database updates because of its reliability. 

When a user application needs to resolve a symbolic name into a network address, a 
query is sent by the application to the resolver process, which then communicates the 
query to the name server. (I examine the resolver in more detail in the next section, 
"Resource Records.") The name server checks its own tables and returns the network 
address corresponding to the symbolic name. If the name server doesn't have the 
information it requires, it can send a request to another name server. This process is 
shown in Figure 11.2. Both the name servers and the resolvers use database tables and 
caches to maintain information about the machines in the local zone, as well as 
recently requested information from outside the zone. 

Figure 11.2. Resolving symbolic names. 

When a name server receives a query from a resolver, there are several types of 
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operations the name server can perform. Name resolver operations fall into two 
categories: nonrecursive and recursive. A recursive operation is one in which the name 
server must access another name server for information. 

Nonrecursive operations performed by the name server include a full answer to the 
resolver's request, a referral to another name server (which the resolver must send a 
query to), or an error message. When a recursive operation is necessary, the name server 
contacts another name server with the resolver's request. The remote name server 
replies to the request with either a network address or a negative message, indicating 
failure. DNS rules prohibit a remote name server from sending a referral to yet another 
name server. 

Resource Records

The information required to resolve symbolic names is maintained by the name server in a 
set of resource records, which are entries in a database. Resource records (often 
abbreviated RR) contain information in ASCII format. Because ASCII is used, it is easy to 
update the records. The format of resource records is shown in Figure 11.3. 

Figure 11.3. The resource record format. 

The Name field is the domain name of the machine the record refers to. If no name is 
specified, the previously used name is substituted. 

The Type field identifies the type of resource record. Resource records are used for 
several purposes, such as mapping names to addresses and defining zones. The Type of 
resource record is identified by a mnemonic code or a number. These codes and their 
meanings are shown in Table 11.1. Some of the resource record types are now obsolete (3 
and 4), and others are considered experimental at this time (13 and 17–21). 

Table 11.1. Resource record types.

Number Code Description 

1 A Network address 

2 NS Authoritative name server 

3 MD Mail destination; now replaced by MX 

4 MF Mail forwarder; now replaced by MX 

5 CNAME Canonical alias name 
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6 SOA Start of zone authority 

7 MB Mailbox domain name 

8 MG Mailbox member 

9 MR Mail rename domain 

10 NULL Null resource record 

11 WKS Well-known service 

12 PTR Pointer to a domain name 

13 HINFO Host information 

14 MINFO Mailbox information 

15 MX Mail exchange 

16 TXT Text strings 

17 RP Responsible person 

18 AFSDB AFS-type services 

19 X.25 X.25 address 

20 ISDN ISDN address 

21 RT Route through 

The Class field in the resource record layout contains a value for the class of record. 
If no value is specified, the last class used is substituted. Internet name servers usually 
have the code IN. 

The Time to Live (TTL) field specifies the amount of time in seconds that the resource 
record is valid in the cache. If a value of 0 is used, the record should not be added to the 
cache. If the TTL field is omitted, a default value is used. Usually this field tells the 
name server how long the entry is valid before it has to ask for an update. 

The data section of the resource record contains two parts, consisting of the length of 
the record and the data itself. The Data Length field specifies the length of the data 
section. The data is a variable-length field (hence the need for a length value) that 
describes the entry somehow. The use of this field differs with the different types of 
resource records. 

Some resource record types have a single piece of information in the data area, such as 
an address, or at most three pieces of information. The only exception is the Start of 
Authority resource record. The contents of the resource record data areas (except 



SOAs) are given in Table 11.2. 

Table 11.2. The contents of the resource record data areas.

RR Type Fields in Data Area 

A Address: A network address 

NS NSDNAME: The domain name of host 

MG MGNAME: The domain name of mailbox 

CNAME CNAME: An alias for the machine 

HINFO CPU: A string identifying CPU type 

OS: A string identifying operating system 

MINFO RMAILBX: A mailbox responsible for mailing lists 

EMAILBOX: A mailbox for error messages 

MB MADNAME: Now obsolete 

MR NEWNAME: Renames the address of a specific mailbox 

MX PREFERENCE: Specifies the precedence for delivery 

EXCHANGE: The domain name of the host that acts as mail exchange 

NULL Anything can be placed in the data field 

PTR PTRDNAME: A domain name that acts as a pointer to a location 

TXT TXTDATA: Any kind of descriptive text 

WKS Address: A network address 

Protocol: The protocol used 

Bitmap: Used to identify ports and protocols 

The Start of Authority (SOA) resource record format is used to identify the machines 
within a zone. There is only one SOA record in each zone. The format of the SOA data 
field is shown in Figure 11.4. The fields in the SOA resource record are used mostly for 
administration and maintenance of the name server. 

Figure 11.4. The SOA resource record format. 

The MNAME field is the domain name of the source of data for the zone. The RNAME 
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(responsible person name) field is the domain name of the mailbox of the administrator of 
the zone. The Serial field contains a version number for the zone. It is incremented 
when the zone is changed; otherwise, it is maintained as the same value for all such 
messages. 

The Refresh Time is the number of seconds between data refreshes for the zone. The 
Retry Time is the number of seconds to wait between unsuccessful refresh requests. The 
Expiry Time is the number of seconds after which the zone information is no longer 
valid. Finally, the Minimum Time is the number of seconds to be used in the Time to Live 
field of resource records within the zone. 

Some sample resource records show the simple format used. Address resource records 
consist of the machine name, the type of resource record indicator (A for Address RRs, 
for example), and the network address. A sample Address resource record would look 
like this: 

TPCI_SCO_4     IN     A    143.23.25.7

The IN tags the resource record as an Internet class. This format makes it easy to locate 
a name and derive its address. (The reverse, going from address to name, is not as easy and 
requires a special format called IN-ADDR-ARPA, which is examined in the next section, 
"IN-ADDR-ARPA.") 

For Well-Known Service resource records (WKS, or type 11), the data field of the 
record contains three fields used to describe the services supported at the address the 
record refers to. A sample WKS resource record might look like this: 

TPCI_SCO.TPCI.COM     IN     WKS     143.23.1.34.

                                     FTP  TCP  SMTP  TELNET

The full domain name and Internet address are shown, as is the IN to show the Internet 
class of resource records. The type of record is indicated with the WKS. The protocols 
supported by the machine at that address are listed after the address. In reality, these 
are bitmaps that correspond to ports. When the port bit is set to a value of 1, the service 
is supported. The list of ports and services is defined by an Internet RFC. 

IN-ADDR-ARPA



The address fields, such as in the Address resource record type, use a special format 
called IN-ADDR-ARPA. This enables reverse mapping from the address to the host name as 
well as host-to-address mapping. To understand IN-ADDR-ARPA, it is useful to begin 
with a standard-format resource record. Earlier it was mentioned that resource records 
are maintained in ASCII format. One of the simplest types of resource record is for the 
address (type A), as seen earlier. An extract from an address file is shown here: 

TPCI_HPWS1    IN     A     143.12.2.50

TPCI_HPWS2    IN     A     143.12.2.51

TPCI_HPWS3    IN     A     143.12.2.52

TPCI_GATEWAY  IN     A     143.12.2.100

              IN     A     144.23.56.2

MERLIN        IN     A     145.23.24.1

SMALLWOOD     IN     A     134.2.12.75

Each line of the file represents one resource record. In this case, they are all simple 
entries that have the machine's symbolic name (alias), the class of machine (IN for 
Internet), A to show it is an Address resource record, and the Internet address. The 
entry for the machine TPCI_GATEWAY has two corresponding addresses because it is a 
gateway between two networks. The gateway has a different address on each of the 
networks, so it has two resource records in the same file. (As with most other code 
fragments in this book, these example addresses are hypothetical.) 

This type of file makes name-to-address mapping easy. The name server simply searches for 
a line with the symbolic name requested by the application and returns the Internet 
address at the end of that line. The databases are indexed on the name, so these searches 
proceed very quickly. 

Searching from the address to the name is not quite as easy. If the resource record files 
are small, time delays for a manual search are not appreciable, but with large zones 
there can be thousands or tens of thousands of entries. The index is on the name, so 
searching for an address can be a slow process. To solve this reverse-mapping problem, IN-
ADDR-ARPA was developed. IN-ADDR-ARPA uses the host address as an index to the 
host's resource record information. When the proper resource record is located, the 
symbolic name can be extracted. 

IN-ADDR-ARPA uses the PTR resource record type (see Table 11.1) to point from the 
address to the name. There might be one of these pointer indexes maintained on each 
name server. An example of a number-to-name file follows: 



23.1.45.143.IN-ADDR-ARPA.    PTR    TPCI_HPWS_4.TPCI.COM

1.23.64.147.IN-ADDR-ARPA.    PTR    TPCI_SERVER.MERLIN.COM

3.12.6.123.IN-ADDR-ARPA.     PTR    BEAST.BEAST.COM

23.143.IN-ADDR-ARPA          PTR    MERLINGATEWAY.MERLIN.COM

The Internet addresses are reversed in the IN-ADDR-ARPA file for ease of use. As shown 
in the sample file, it is not necessary to specify the complete address for a gateway 
because the domain name provides enough routing information. 

Messages

DNS messages are transferred between name servers to update their resource records. 
The fields of these messages are quite similar to those of the records themselves. The 
format of a DNS message is shown in Figure 11.5. The header has several subfields that 
contain information about the type of question or answer being sent. The rest of the 
message consists of four variable-length fields, which are further subdivided: 

●     Question: The information required. 

●     Answer: The answer to the query (from the RR). 

●     Authority: The name of other name servers that might have the information 
requested, if it is not readily available on the targeted name server. 

●     Additional information: Information that can be provided to answer the query, 
or the addresses of name servers if the Authority field was used. 

Figure 11.5. The DNS message format. 

The DNS message header has several different fields itself, as shown in Figure 11.6. The 
header is present in all DNS messages. The header ID field is 16 bits long and is used to 
match queries and answers to each other. The single-bit QR field is set to a value of 0 to 
indicate a query, or a value of 1 to show a response. The OpCode field is 4 bits long and 
can have one of the values shown in Table 11.3. 

Figure 11.6. The DNS message Header format. 
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Table 11.3. The DNS message header OpCode values.

OpCode Value Description 

0 Standard query 

1 Inverse query 

2 Server status request 

3–15 Not used 

The AA field is the authoritative answer bit. A value of 1 in a response message indicates 
that the name server is the recognized authority for the queried domain name. The TC 
(truncation) bit is set to a value of 1 when the message is truncated because of excessive 
length. Otherwise, the TC bit is set to 0. The RD (recursion desired) bit is set to 1 when 
the name server is requested to perform a recursive query. The RA (recursion available) 
bit is set to 1 in a response when the name server can perform recursions. 

The Z field is 3 bits long and is not used. The RCODE field is 4 bits long and can be set to 
one of the values shown in Table 11.4. 

Table 11.4. The DNS message header RCODE values.

RCODE Value Description 

0 No errors 

1 Format error; name server unable to interpret the query 

2 Name server problems have occurred 

3 The name server could not find the domain reference in the query 

4 Name server does not support this type of query 

5 
Name server cannot perform the requested operation for administrative 
reasons 

6–15 Not used 

The QDCOUNT field is a 16-bit field for the number of entries in the Question section. 
The ANCOUNT field is another 16-bit field for the number of replies in the Answer 
section (the number of resource records in the answer). The NSCOUNT field is 16 bits and 
specifies the number of server resource records in the Authority section of the message. 
The ARCOUNT 16-bit field specifies the number of resource records in the Additional 



record section. 

The Question section of the message has three fields of its own, as shown in Figure 11.7. 
The Question field carries the query, which is identified by these fields. The QNAME 
field is the domain name requested. The QTYPE is the type of query, using one of the 
values shown in Table 11.1. The QCLASS is the class of query, which can be set according 
to the application’s requirements. 

Figure 11.7. The DNS message Question field format. 

The last three fields in the DNS message (Answer, Authority, and Additional 
information) all have the same format, as shown in Figure 11.8. The Name field holds the 
domain name of the resource record. The Type field has any of the valid resource record 
type values. (See Table 11.1.) 

Figure 11.8. The format for DNS message Answer, Authority, and Additional 
information fields. 

The Class is the class of data in the data field. The Time to Live (TTL) field is the number 
of seconds the information is valid without an update. The RDLENGTH field is the 
length of the information in the data field. Finally, the RDATA field is the resource 
record information or other data, depending on the class and type of the query and 
reply. There can be many such records in the Answer, Authority, and Additional 
information sections of the DNS message. 

The Name Resolver

As far as user applications are concerned, resolving the symbolic names into actual 
network addresses is easy. The process has been mentioned earlier. The application sends 
a query to a process called the name resolver, or resolver (which sometimes resides on 
another machine). The name resolver might be able to resolve the name directly, in 
which case it sends a return message to the application. If the resolver cannot 
determine the network address, it communicates with the name server (which might 
contact another name server). 

The resolver is intended to replace existing name resolution systems on a machine, such 
as UNIX's /etc/hosts file. The replacement of these common mechanisms is transparent to 
the user, although the administrator must know whether the native name resolution 
system or DNS is to be used on each machine so the correct tables can be maintained. 

When the resolver acquires information from a name server, it stores the entries in its 
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own cache to reduce the need for more network traffic if the same symbolic name is used 
again (as is often the case with applications that work across networks). The amount of 
time the name resolver stores these records is dependent on the Time to Live field in the 
resource records sent, or on a default value set by the system. 

When a name server cannot resolve a name, it can send back a message to the resolver 
with the address of another name server in the Authority field of the message. The 
resolver must then address a message to the other name server in the hopes of resolving 
the name. The resolver can ask the name server to conduct the query itself by setting 
the RD (recursive) bit in the message. The name server can refuse or accept the request. 

The resolver uses both UDP and TCP in its query process, although UDP is more common, 
due to its speed. However, iterative queries or transfers of large amounts of information 
might resort to TCP because of its higher reliability. 

Under the UNIX operating system, several different implementations of the name 
resolver are in use. The resolver supplied with the BSD versions of UNIX was 
particularly limited, offering neither a cache nor iterative query capabilities. To solve 
these limitations, the Berkeley Internet Name Domain (BIND) server was added. BIND 
provides both caching and iterative query capabilities in three different modes: as a 
primary server, as a secondary server, or as a caching-only server (which doesn't have a 
database of its own, only a cache). The use of BIND on BSD systems enables another 
process to take over the workload of name resolution, a process that might be on 
another machine entirely. 

Configuring a UNIX DNS Server

Configuring a DNS server requires several files and databases to be modified or created. 
The process is time-consuming, but luckily has to be done only once for each server. The 
files involved in most DNS setups, and their purposes, are as follows: 

named.hosts: Defines the domain with hostname-to-IP mappings 

named.rev: Uses IN-ADDR-ARPA for IP-to-hostname mappings 

named.local: Used to resolve the loopback driver 

named.ca: Lists root domain servers 

named.boot: Used to set file and database locations 

These filenames are used by convention, but they can be changed to suit your own 



personal needs. The primary file in the list is named.boot, which is read when the system 
boots up and defines the other files in the set. Therefore, any filename changes are 
reflected in named.boot. For simplicity, I use the conventional filenames in this chapter. 
Each of the files listed here is a database with entries in the form of a resource record. 

Entering the Resource Records

For the sample server configuration, I assume a UNIX operating system using fairly 
standard names and network layouts. DNS lets you get very complex, but it's easier to 
see what the files and resource records are doing with a simple layout. 

An SOA resource record is placed in the named.hosts file. Semicolons in the record are 
used for comments. This resource record has been formatted as one field per line to make 
its entries clear, although this is not necessary. This resource record defines an upper 
boundary of the tpci.com domain, with server.tpci.com the primary name server for the 
domain, root.merlin.tpci.com the e-mail address of the person responsible for the domain, 
and the rest of the entries identified by comments: 

tpci.com.   IN   SOA     server.tpci.com

    root.merlin.tpci.com (

    2  ; Serial number

    7200 ; Refresh (2 hrs)

    3600 ; Retry (1 hr)

    151200 ; Expire (1 week)

    86400 ); min TTL

Note that the information from the serial number to the expire field is enclosed in 
parentheses. This is part of the command syntax and must be included to indicate the 
parameter order. 

In addition to the SOA RR, the named.hosts file contains Address records. These records 
are used for the actual mapping of a host name to its IP address. A few Address resource 
records show the format of these entries (refer to earlier sections of this chapter for 
the meanings of each field if you are not sure): 



artemis     IN     A    143.23.25.7

merlin      IN     A    143.23.25.9

pepper      IN     A    143.23.25.72

The hostnames are not given as fully qualified domain names because the server can 
deduce the full name. If you want to use the full domain name, you must follow the 
name with a period. The machines shown in the preceding example would be given like 
this using fully qualified domain names: 

artemis.tpci.com.     IN     A    143.23.25.7

merlin.tpci.com.      IN     A    143.23.25.9

pepper.tpci.com.      IN     A    143.23.25.72

The Pointer (PTR) resource record is used to map an IP address to a name using IN-ADDR-
ARPA. A single PTR RR helps make this clear. The record 

7.0.120.147.in-addr.arpa IN PTR merlin

indicates that the machine named merlin has the IP address 147.120.0.7. 

The Name Server resource records point to the name server that has authority for a 
particular zone. Name Server (NS) records are used when a large network has several 
subnetworks, each with its own name server. An entry looks like this: 

tpci.com   IN   NS  merlin.tpci.com

This record indicates that the DNS server for the tpci.com domain is called 
merlin.tpci.com. If there were several subnets used in tpci.com, there would be an NS RR 
for each subnet. 

Completing the DNS Files

As you saw earlier, DNS uses several files to hold resource records describing the zones 
used by DNS. The first file of interest is named.hosts, which contains the SOA, NS, and A 



resource records. All entries in the named.hosts file must begin in the first character 
position of each line. Here's a sample named.hosts file with comments added to show the 
records: 

; named.hosts files

; Start Of Authority RR

tpci.com.    IN    SOA     merlin.tpci.com

            root.merlin.tpci.com (

            2  ; Serial number

            7200 ; Refresh (2 hrs)

            3600 ; Retry (1 hr)

            151200 ; Expire (1 week)

            86400 ); min TTL

;

; Name Service RRs

tpci.com   IN   NS  merlin.tpci.com

subnet1.tpci.com IN NS goofy.subnet1.tpci.com

;

; Address RRs

artemis     IN     A    143.23.25.7

merlin      IN     A    143.23.25.9

windsor     IN     A    143.23.25.12

reverie     IN     A    143.23.25.23

bigcat      IN     A    143.23.25.43

pepper      IN     A    143.23.25.72

The first section sets the SOA record, which defines the parameters for TTL, expiry, 
refresh, and so on. It sets the name server for the tpci.com domain to merlin.tpci.com. The 



second section uses the NS resource records to define the name server for the tpci.com 
domain as merlin.tpci.com (the same as the SOA) and a subnet of tpci called subnet1, for 
which the name server is goofy.subnet1.tpci.com. The third section has a list of the 
address-record-name-to-IP-address mapping. There is an entry in this section for each 
machine on the network. 

The named.rev file provides the reverse mapping of IP address to machine name and is 
composed of Pointer resource records. The same format as the named.hosts file is 
followed, except for the swapping of name and IP address and the conversion of the IP 
address to IN-ADDR-ARPA style. The equivalent named.rev file for the named.hosts file 
shown earlier looks like this: 

; named.rev files

; Start Of Authority RR

23.143.in-addr.arpa    IN    SOA     merlin.tpci.com

            root.merlin.tpci.com (

            2  ; Serial number

            7200 ; Refresh (2 hrs)

            3600 ; Retry (1 hr)

            151200 ; Expire (1 week)

            86400 ); min TTL

;

; Name Service RRs

23.143.in-addr.arpa   IN   NS  merlin.tpci.com

100.23.143.in-addr.arpa   IN NS goofy.subnet1.tpci.com

;

; Address RRs

9.25.23.143.in-addr.arpa   IN   PTR merlin

12.25.23.143.in-addr.arpa  IN   PTR windsor

23.25.23.143.in-addr.arpa  IN   PTR reverie 



43.25.23.143.in-addr.arpa  IN   PTR bigcat

72.25.23.143.in-addr.arpa  IN   PTR pepper

There must be a separate named.rev file for each zone or subdomain on the network. 
These files can have different names or be placed in different directories. If you have 
only a single zone, one named.rev file is all that's needed. 

The named.local file contains an entry for the loopback driver (which always has the IP 
address 127.0.0.1). This file must contain information about the IN-ADDR-ARPA mapping 
of the loopback driver, as well as a domain again (because the named.rev file doesn't 
cover the 127 subnet). A named.local file looks like this: 

; named.local files

; Start Of Authority RR

0.0.127.in-addr.arpa    IN    SOA     merlin.tpci.com

            root.merlin.tpci.com (

            2  ; Serial number

            7200 ; Refresh (2 hrs)

            3600 ; Retry (1 hr)

            151200 ; Expire (1 week)

            86400 ); min TTL

;

; Name Service RR

0.0.127.in-addr.arpa   IN   NS  merlin.tpci.com

;

; Address RR

1.0.0.127.in-addr.arpa   IN   PTR localhost

This file then provides the mapping from the machine named localhost to the IP address 
127.0.0.1. 

The named.ca file is used to specify name servers that the system can resort to. The 



machines specified in the named.ca file should be stable and not subject to rapid change. 
A sample named.ca file looks like this: 

; named.ca

; servers for the root domain

;

.  99999999  IN   NS  ns.nic.ddn.mil.

   99999999  IN   NS  ns.nasa.gov.

   99999999  IN   NS  ns.internic.net

; servers by address

;

ns.nic.ddn.mil   99999999   IN  A  192.112.36.4

ns.nasa.gov      99999999   IN  A  192.52.195.10

ns.internic.net  99999999   IN  A  198.41.0.4

In this file only three DNS servers have been specified. A normal named.ca file can have 
a dozen or so name servers, depending on their proximity to your system. You can get a 
full list of valid root domain name servers through anonymous FTP to nic.ddn.mil, in 
the file /netinfo/root-servers.txt. This file can be pasted into named.ca. The servers 
specified in the named.ca file are each identified by two entries. One gives the root 
domain (the period) followed by the name server name; the other has the name server IP 
address. The Time to Live field is set very large because these servers are expected to be 
always available. 

The named.boot file is used to trigger the loading of the DNS daemons and to specify the 
primary and secondary name servers on the network. A sample named.boot file looks like 
this: 

; named.boot

directory    /usr/lib/named

primary    tpci.com    named.hosts

primary    25.143.in-addr.arpa    named.rev



primary    0.0.127.in-addr.arpa    named.local

cache    .    named.ca

The first line of the named.boot file has the keyword directory followed by the 
directory of the DNS configuration files. Each following line with the keyword primary 
tells DNS the files that it should use to find configuration information. The first line, 
for example, sets named.hosts as the file for locating the primary server of tpci.com. The 
IN-ADDR-ARPA information is kept in the file named.rev for the 143.25 subnet. The 
localhost information is in named.local, and finally the server and name cache 
information are in named.ca. 

A secondary name server is configured only slightly differently than a primary server. 
The difference is in the named.boot file, which points back to the primary server. 

Starting the DNS Daemons

The final step in the DNS configuration is to ensure that the DNS daemon called named 
is loaded when the UNIX system boots. This is usually done through the rc startup 
scripts. Most versions of UNIX have the routines for DNS startup already entered in the 
startup script, usually in the form of a check for the file named.boot. If named.boot 
exists, the DNS daemon named starts. The code usually looks like this: 

# Run DNS server if named.boot exists

if [ -f /etc/inet/named.boot -a -x /usr/sbin/in.named ]

then

   /usr/sbin/in.named

fi

The exact directory paths and options might be different in your rc script, but the 
command should check for the named.boot file and start named if it exists. 

Configuring a Client

Configuring a UNIX machine to use a primary DNS server for resolution is a quick 



process. First, the /etc/resolv.conf file is modified to include the primary server's address. 
For example, a resolv.conf file might look like this: 

domain tpci.com

nameserver   143.25.0.1

nameserver   143.25.0.2

The first line establishes the domain name, which is followed by the IP addresses of 
available name servers. This file points to two name servers on the 143.25 subnet. 

BOOTP Protocol

TCP/IP needs to know an Internet address before it can communicate with other 
machines. This can cause a problem when a machine is initially loaded or has no 
dedicated disk drive of its own. On Day 2, "TCP/IP and the Internet," you saw how 
Reverse Address Resolution Protocol (RARP) can be used to determine an IP address, but 
an alternative is in common use: the bootstrap protocol or BOOTP. BOOTP uses UDP to 
enable a diskless machine to determine its IP address without using RARP. 

Diskless machines usually contain start-up information in their PROMs. Because these 
must be kept small and consistent between many models of diskless workstations to 
reduce costs, it is impossible to pack a complete protocol such as TCP/IP into a chip. It is 
also impossible to embed an IP address, because the chip can be used in many different 
machines on the same network. This forces a newly booted diskless workstation to 
determine its own IP address from the other machines on the network. (In practice, the 
diskless machine also must determine the IP address of the network server it will use, as 
well as the address of the nearest IP gateway.) 

BOOTP overcomes a few of RARP's problems. RARP requires direct access to the network 
hardware, which can cause problems when dealing with servers. Also, RARP supplies 
only an IP address. When large packets must be sent, this wastes a lot of space that 
could be used for useful information. BOOTP was developed to use UDP and can be 
implemented within an application program. BOOTP also requires only a single packet of 
information to provide all the information a new diskless workstation requires to begin 
operation. Therefore, BOOTP is more efficient and easier to develop applications for, 
making it popular. 

To determine a diskless workstation's IP address, BOOTP uses the broadcast capabilities 
of IP. (You might recall that IP enables several special network addresses that are 



broadcast to all machines on the network.) This lets the workstation send a message 
even when it doesn't know the destination machine's address or even its own. 

IP broadcast addresses such as 255.255.255.255 enable a 
message to be sent to all machines on a network despite having 
no source or destination network address. 

BOOTP puts all the communications tasks on the diskless workstation. It specifies that 
all UDP messages sent over the network use checksums and that the Do Not Fragment 
bit be set. This tends to reduce the number of lost, misinterpreted, or duplicated 
datagrams. 

To handle the loss of a message, BOOTP uses a simple set of timers. When a message has 
been sent, a timer starts. If no reply has been received when the timer runs out, the 
message is resent. The protocol stipulates that the timer is set to a random value, which 
increases each time the timer expires until it reaches a maximum value, after which it is 
randomized again. This prevents massive traffic after several machines fail at once and 
try to broadcast BOOTP messages at the same time. 

BOOTP uses the terms client and server to refer to machines. The client is the machine 
that initiates a query, and the server is the machine that replies to that query. From 
these definitions, it is easy to see that client and server have no physical relation to 
any workstation, because the role of each workstation can change with message traffic. 
Because most systems can handle multiple traffic threads at a time, it is possible for a 
machine to be both a client and a server simultaneously. 

When considering client/server roles in BOOTP, remember 
that the machine that sends the first message is the client and 
the machine that replies is the server. There is no relationship 
to client/server architecture terms. 

BOOTP Messages



BOOTP messages are kept in fixed formats for simplicity and to enable the BOOTP 
software to fit in a small space within a PROM. The format of BOOTP messages is shown 
in Figure 11.9. The OpCode field is used to signal either a request (set to a value of 1) or 
a reply (set to a value of 2). The HTYPE field indicates the network hardware type. The 
HLEN field indicates the length of a hardware address. (These last two fields are the 
same as in ARP.) 

Figure 11.9. The BOOTP message format. 

The HOPS field keeps track of the number of times the message is forwarded. When the 
client sends the request message, a value of 0 is put in the HOPS field. If the server 
decides to forward the message to another machine, it increments the HOPS count. 
(Forwarding is necessary when bootstrapping a machine across more than one gateway.) 

The Transaction Number field is an integer assigned by the client to the message and is 
unchanged from request to reply. This enables matching the replies to the correct 
request. The Seconds field is the number of seconds the client has been booted, assigned 
by the client when the message is sent. 

The Client IP Address field is filled in as much as possible by the client. This might 
result in a partial network address or no information at all, depending on the client's 
knowledge of the network it is in. Any information that is unknown is set to 0 (so the 
field might be 0.0.0.0 if nothing is known about the network address). If the client wants 
information from a particular server, it can put the address of the server in the Server 
IP Address field. Similarly, if the client knows the server's name, it puts it in the Server 
Host Name field. The same applies for the other address fields. If the fields are set to 0, 
any server can respond. If a specific server or gateway is given, only that machine 
responds to the message. 

The Vendor-Specific field is used, as the name suggests, for implementation information 
that is specific to each vendor. This field is optional. The first 32 bits define the format 
of the remaining information. These first bits are known as the magic cookie and have a 
standard value of 99.120.83.99. Following the magic cookie are sets of information in a 
three-field format: a type, a length, and a value. There are several types identified by 
the Internet RFC, as shown in Table 11.5. The Length field is not used for types 0 and 
255, but it must be present for types 1 and 2. The length can vary depending on the 
number of entries in the other types of messages. 

Table 11.5. BOOTP vendor-specific types.

Type Code Length Description 

Padding 0 -- Used only for padding messages 

Subnet Mask 1 4 Subnet mask for local network 

file:///D|/UncleVan/Current/Teach%20Yourself%20TCP-IP%20in%2014%20Days%202nd%20Edition/11tyt09.gif


Time of Day 2 4 Time of Day 

Gateways 3 Number of entries IP addresses of gateways 

Time Servers 4 Number of entries IP addresses of time servers 

IEN116 Server 5 Number of entries IP addresses of IEN116 servers 

DomainName Server 6 Number of entries IP addresses of Domain Name Servers 

Log Server 7 Number of entries IP addresses of log servers 

Quote Server 8 Number of entries IP addresses of quote servers 

LPR Servers 9 Number of entries IP addresses of lpr servers 

Impress 10 Number of entries IP addresses of impress servers 

RLP Server 11 Number of entries IP addresses of RLP servers 

Hostname 12 Number of bytes Client host name in host name 

Boot size 13 2 Integer size of boot file 

Unused 128–254 -- Not used 

End 255 -- End of list 

You might remember that a machine can obtain the subnet mask from an ICMP message, 
but BOOTP is the recommended method of obtaining this value. 

The Boot Filename field can specify a filename from which to obtain a memory image 
that enables the diskless workstation to boot properly. This might be vendor-set or 
supplied by the server. This enables the memory image to be obtained from one machine 
while the actual addresses are obtained from another. If this field is set to 0, the server 
selects the memory image to send. 

The process of booting follows two steps. The first is to use BOOTP to obtain 
information about the network addresses of the client and at least one other machine 
(a gateway or server). The second step uses a different protocol to obtain a memory 
image for the client. 

A two-step process using two different protocols is used to 
separate the configuration and operating system load of the 
machine. The use of two protocols enables optimization for each 
task. Two steps are also used because the machine that replies 



to the BOOTP client message might not be the machine that 
downloads the memory image. 

Network Time Protocol (NTP)

Timing is very important to networks, not only to ensure that internal timers are 
maintained properly, but also for synchronization of clocks for sending messages and 
timestamps within those messages. Some systems rely on time for routing. Ensuring that 
time clocks are consistent and accurate is a task often overlooked, but it remains 
important enough to have a formal procedure defined by an Internet RFC. The protocol 
that maintains time standards is called the Network Time Protocol, or NTP. NTP can use 
either TCP or UDP; port 37 is dedicated to it. 

The operation of NTP relies on obtaining an accurate time from a query to a primary 
time server, which itself gets its timing information from a standard time source (such as 
the National Institute of Standards and Technology in the U.S.). The time server 
queries the standard clock (also called a master clocking source) and sets its own times to 
the standard. 

Once the primary time server has an accurate time, it sends NTP messages to secondary 
time servers further out on the internetwork. Secondary time servers can communicate 
with more secondary time servers using NTP, although accuracy is lost with each 
communication due to latency in the networks. Eventually, these time messages can be 
sent to gateways and individual machines within a network, if the administrator so 
decides. Usually each network has at least one primary time server and one secondary 
server, although large networks might have several of each. 

The format of NTP messages is simple, as shown in Figure 11.10. Several control fields are 
used for synchronization and updating procedures, but the details of these fields are 
not important to this discussion. The Sync Distance to Primary field is an estimate of the 
round-trip delay incurred to the primary clock. The ID of the primary time server is the 
address of the primary. 

Figure 11.10. The NTP message format. 

There are several timestamps in the NTP message. The Time Local Clock Updated is the 
time the message originator's local clock was updated. The Originate timestamp is the 
time the message was sent. The Receive timestamp is the time it was received. The 
Transmit timestamp is the time the message was transmitted after reception. 
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All timestamps are calculated from an offset of the number of seconds since January 1, 
1900. The timestamp fields are 64 bits, the first 32 bits for a whole number and the last 32 
for a fraction. The final Authentication field is optional and can be used to 
authenticate the message. 

Summary

You have now seen how the Domain Name Service works. DNS is an integral and 
important part of most TCP/IP installations, enabling symbolic names to be resolved 
properly across networks. The use of name servers was explained, as well as the manner 
in which records are stored within the servers. Associated with DNS is the ARP and IN-
ADDR-ARPA name resolution process. 

Today I also looked at the BOOTP protocol, necessary to enable many diskless terminals 
and workstations to connect to the network and load their operating system. Without 
BOOTP, you would all need full-featured computers or workstations. 

Q&A

What are the top-level domain names and what are their purposes? 

The top level domains are .arpa (Internet-specific), .com (commercial), .edu (educational 
institutions), .gov (governmental), .mil (military), and .org (non-commercial 
organizations). 

What does a DNS name server do? 

The DNS name server manages a zone of machines and provides name resolution for all 
machines within that zone. 

If a name server cannot resolve a name using its own tables, what happens? 

Queries can be sent from the machine receiving the query to other name servers to 
search for a resolution. If another machine does have the answer, it is not returned to 
the inquiring machine, however. Only the address of the name resolver with the answer 
is returned. The inquiring machine must then send a specific query to the resolver with 
the answer. 



What is the advantage of the IN-ADDR-ARPA format? 

IN-ADDR-ARPA enables a mapping from the IP address to the symbolic host name. 
Sometimes this is a fast way to obtain the symbolic name of a destination machine. 

Why does BOOTP use UDP? 

Simply because it is smaller to code. To embed TCP code in a PROM would take much more 
room than the simple code needed for UDP. 

Quiz

1.  What protocol is used by DNS name servers? Why is that a good choice? 

2.  What is a DNS resource record? 

3.  Show a sample entry in an IN-ADDR-ARPA file and explain what the fields mean. 

4.  BOOTP helps a diskless workstation boot. How does it get a message to the 
network looking for its IP address and the location of its operating system boot 
files? 

5.  What is the Network Time Protocol? Why is it used? 
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Today I look at the Network File System (NFS), a set of protocols and products in wide 
use with TCP/IP-based networks. NFS is especially popular with UNIX networks, but it is 
now available for many platforms and works well across a local area network. I also 
look at several protocols that are closely associated with NFS, such as Network 
Information Service (NIS), and the Remote Execution Service (REX). 

Today's text concentrates on the UNIX versions of these protocols, simply because they 
serve as an excellent illustration. For other operating systems, names of files and 
procedures might change, but the fundamentals are compatible. I show some examples of 
using PC machines for NFS and NIS as appropriate. 

Network File System (NFS)

The move to distributed processing and client/server architectures has meant that many 
users have small, powerful machines on their desk that communicate with a larger 
server somewhere on a network. The applications the user needs are often located in 
places other than on their desktop, so some method of accessing remote files 
(applications and data) is required. Although both Telnet and rlogin enable a user to 
use a remote machine, neither system takes advantage of the user's desktop machine. 
Peripheral sharing has also become important as local area networks grow. To help 
integrate workstations into local area networks, as well as to simplify remote file 
access and peripheral sharing, Sun Microsystems introduced the Network File System 
(NFS). 

Sun designed NFS so that it would enable machines from different vendors to work 
together, even if they used different operating systems. Sun published the NFS 
specifications, enabling other vendors to adopt their own hardware and software to 
work smoothly with NFS. This results in a completely homogeneous network. Since Sun's 
introduction, NFS has become a de facto standard among UNIX environments, with 
strong support in other operating systems, as well. 

NFS actually refers to both a product and a protocol. There is an NFS product that 
consists of a set of protocols for different tasks (these are examined in the section 
titled "NFS Protocols"). The NFS protocol is the one protocol of the NFS product that 
deals with file access. To avoid confusion, you should think of the NFS protocol 
specifically (instead of the entire product set) when NFS is mentioned today. 

NFS is now intimately tied with UNIX, and it is shipped as part of the System V Release 4 
software version. It is also tied to TCP/IP, which remains the communications protocol of 



choice for UNIX networks. For other operating systems, NFS is usually an extension 
that is added at the system administrator's option. UNIX systems use the process nfsd to 
manage NFS access, with the process started automatically when the UNIX system boots 
after NFS has been properly configured. 

NFS enables an application to read and write files that reside on NFS servers, with the 
access to the NFS server completely transparent to the application and the user. For 
developers, NFS requires no extra coding or special handling, which makes it especially 
attractive. This transparent access to another machine's file structure is achieved by 
logically attaching the NFS server to the client, a process called mounting. 

The NFS server's file system can be attached as a whole, or just a portion of it can be 
mounted. The directory at which the mount occurs is called the mount point. The concept 
of shared files similar to that encountered with NFS is sometimes called a distributed file 
system, although this is a misnomer with NFS. 

UNIX has had the capability to mount or attach another 
file system for a long time. This type of mounting can occur 
across networks and is transparent to the application and user, 
as long as filenames take into account the full path name of 
the mounted file system. The NFS mount is similar to the UNIX 
mount process. 

NFS uses the term client to represent any machine that requests a file from another 
machine, which is the server. Multitasking operating systems can act as both client and 
server simultaneously, with processes on the machine accessing files on another machine 
while others on the network access its own hard disk. Usually, restrictions are imposed 
as to the files or portions of a file system that can be shared, both for security and speed 
considerations. Typical NFS installations use personal computers or diskless 
workstations as clients accessing a more powerful server system. Because personal 
computer operating systems such as MS-DOS are single-tasking, PCs usually act only as 
clients, unless they run a multitasking operating system such as Windows NT or OS/2. It 
is possible to have an entire network of multitasking computers sharing their drives 
with each other, although in practice this works well only for small networks because 
of the high density of network traffic required to support all the mounted filesystems. 

Because of the need to transfer files quickly, network speed becomes vitally important. 
When it was designed, the original goal for an NFS-mounted file system was to provide 
performance equivalent to 80 percent of the performance expected from a locally 
mounted hard disk. This puts the performance emphasis on both the NFS disk drive and 
the network system. Typically, NFS disk drives are among the fastest available, 



specifically to reduce bottlenecks at the drive end. The network hardware and 
software must be chosen to enable the fastest possible throughput. 

Because NFS is UNIX-based, the security offered is rudimentary. For this reason, Sun has 
introduced Secure NFS, which implements an encrypted messaging protocol for added 
protection against unauthorized access to NFS-mounted file systems. 

NFS Protocols

The NFS product comprises several protocols, only one of which is called the NFS 
protocol. The NFS product protocols are designed as a set of layers, similar to the OSI 
model. The layers of the NFS product are compared to the OSI layers in Figure 12.1. Each 
protocol in the NFS product has an Internet RFC dedicated to its specification. 

Figure 12.1. NFS protocol layers. 

The NFS product is based on the OSI layered model, resulting in protocols that are 
independent (in theory, at least) from each other and protocols in different layers. The 
design philosophy is that any single-layer protocol could be replaced with any other 
one, assuming the functionality of the protocol was the same. To date there are no 
common alternatives for the two lower-layer products, RPC and XDR, although there 
are several for the top layer. 

The source code for both the Remote Procedure Call 
(RPC) and External Data Representation (XDR) protocols is 
available free of charge from Sun Microsystems. 

Figure 12.1 introduces the RPC (Remote Procedure Call) and XDR (External Data 
Representation) protocols that I look at now in more detail. 

Remote Procedure Call (RPC)

The Remote Procedure Call (RPC) protocol acts as the session layer and as the message 
exchanger for all NFS-based applications. RPC is composed of a set of procedures that 
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can be incorporated into high-level applications to handle any required network access. 
The remote procedures are no more complicated to use than local procedures. 

RPC was specially developed for NFS but has since found 
use in other protocol suites. The principles covered here apply 
to those RPC products, as well. 

Application developers can create their own RPC procedures between a client (the one 
that issues the request) and a server (the one that processes the request). A group of 
procedures is called a service. Each server can use only one service, so each service is 
assigned a program number to identify itself to both the client and the server. 

RPC functions over the network between a client and a server. The process followed by 
an RPC is shown in Figure 12.2. It begins with the activation of the procedure by the 
client, from which a request message is sent to the server. After receiving the message 
and extracting the request, the server executes the requested procedure and assembles 
a response message with the results. Upon receipt of the reply, the client disassembles 
the message and continues with the application's normal execution. Every step of the 
procedure is controlled by routines within the RPC library (which is linked into the 
applications). 

Figure 12.2. The execution of an RPC. 

RPC messages can be sent using either TCP or UDP (or for that matter, any other 
protocol that provides the same functionality). Typically, RPC is used with UDP because 
a connection-based protocol is not necessary and UDP is usually faster. However, UDP 
does impose a maximum packet size, which can cause some problems with procedures. Also, 
UDP does not guarantee delivery, so an application that uses UDP must handle 
reliability issues (usually with a retransmission timer). 

The use of TCP offers the capability not only to ignore reliability concerns (leaving 
that to the TCP software), but also to batch requests. With a batch connection, the 
client and server agree that the client can send several RPC requests one after 
another without waiting for acknowledgment or a reply to each. This can be a useful 
feature with some applications. 

The RPC protocol is used to send requests and replies. The format of the RPC protocol 
packet header is shown in Figure 12.3, with all fields coded in the External Data 
Representation (XDR) format (see the section titled "External Data Representation 
(XDR)" later today). The Transaction ID field is used to match requests and replies and 
is changed (usually incremented) by the client with each new request. The Direction 
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Indicator field shows whether the message originated with the client (a value of 0) or 
with the server (a value of 1). The first Version Number is the version of RPC used and 
the second Version Number identifies the version of the program. The Program Number 
identifies the service (set of procedures) to use, as mentioned earlier. The Procedure 
Number identifies the particular procedure in the service. 

Figure 12.3. The RPC protocol header. 

Some procedures might require a client to authenticate itself to the server, both for 
identification purposes and for security reasons. The RPC protocol header contains two 
fields for authentication. The Authorization Information field is for information itself, 
and the Authorization Verification field is used for the validation. The RPC RFC does 
not define how authentication is to be performed, leaving it up to the application 
developer, but it does specify two fields with a maximum size of 400 bytes each. There are 
currently four types of authentication predefined for use: 

●     None: No authentication is used. Both authentication fields have zero length. 

●     UNIX: Uses UNIX permissions (group and user IDs). This type of authentication is 
used by the NFS protocol. There is no authentication information. 

●     Short: Short authentication process. The client generates an authentication 
sequence, which is returned by the server (usually a reference to a previous RPC 
request for convenience). 

●     DES: Authentication is a character string with a Data Encryption Standard (DES) 
encoded timestamp used as the verification. The DES authentication is used by the 
secure NFS product. 

The only authentication system that is really secure is the DES method. The other 
three systems can be readily broken by a knowledgeable developer. 

Each service that uses RPC has a program number that uniquely identifies it to the 
protocol. RPC keeps track of connections using a program number for each, which can be 
mapped to a program name. In UNIX, this mapping is performed in the file /etc/rpc. A 
sample /etc/rpc file follows: 

portmapper    100000  portmap sunrpc

rstat_svc     100001  rstatd rstat rup perfmeter

rusersd       100002  rusers

nfs           100003  nfsprog
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ypserv        100004  ypprog

mountd        100005  mount showmount

ypbind        100007

walld         100008  rwall shutdown

yppasswdd     100009  yppasswd

etherstatd    100010  etherstat

rquotad       100011  rquotaprog quota rquota

sprayd        100012  spray

3270_mapper   100013

rje_mapper    100014

selection_svc 100015  selnsvc

database_svc  100016

rexd          100017  rex

alis          100018

sched         100019

llockmgr      100020

nlockmgr      100021

x25.inr       100022

statmon       100023

status        100024

bootparam     100026

ypupdated     100028  ypupdate

keyserv       100029  keyserver

ypxfrd        100069  ypxfr

pcnfsd        150001  pcnfsd



This file shows the program name and its corresponding program number. The third 
column, when present, shows a program name that corresponds with the process name in 
the first column. The program numbers shown in this file are assigned by the RPC RFC 
and should be consistent across all implementations of RPC. 

Port Mapper

Connections between a client and server are over ports, each with its own number (port 
numbers are used in TCP/IP to define a connection). To prevent problems with port 
allocation using RPC, a port mapper was developed. Without the port mapper, a server 
could easily run out of available ports with only a few RPC connections active. 

The port mapper controls a table of ports and RPC programs using those ports. The port 
mapper itself has a dedicated port number (port 111 with both UDP and TCP). The ports 
available to RPC connections are assigned when the RPC program is initiated, at which 
time these port numbers are sent to the port mapper. 

When a client wants to use RPC, it sends a request to the server. This request follows 
the RPC header format seen in Figure 12.3 and includes the version number of RPC, the 
service number, and the protocol to be used. The port mapper can then allocate a 
suitable port number and return that number in a reply message to the client. Once a 
port number has been assigned for that client, it is maintained, so that all procedure 
requests come over that port until the application terminates. The port numbers might 
be maintained over several processes, so the port inquiry needs to be conducted only 
once between system power cycles. 

This procedure does have a drawback: the client must know the server's address. It 
cannot simply send out a generic request for a server with the services it is looking for. 
This has been overcome with some newly developed network file systems, although not 
NFS. 

External Data Representation (XDR)

The External Data Representation (XDR) is the method by which data is encoded within 
an RPC message (or other protocol systems, as well). There is no formal message header 
or protocol system for XDR, although the XDR RFC does define the method of encoding 
data. 

XDR is used to ensure that data from one system is compatible with others. It might seem 



that no formal definition is required, but consider the case of an EBCDIC-based machine 
communicating with an ASCII-based machine. XDR enables both ends to convert from 
their local data representation to a common format, removing any doubts about the 
meaning of the data. (EBCDIC to ASCII is not the major conversion problem. Some systems 
use high bits as significant, and others use low bits. Also, formats for defining types of 
numbers differ considerably.) 

The XDR format uses sequential bits written into a buffer, then formatted into a 
message and sent to the lower protocol layers. XDR relies on an 8-bit byte, with the 
lower bytes being the most significant. The RFC defines that all integer data types are 
converted to 4-byte integers, with an extended 64-bit hyperinteger format available. IEEE 
32-bit formats are used for floating-point numbers, where the mantissa is the lower 23 
bits, the exponent takes 8 bits, and the sign of the number is 1 bit. Where data takes less 
than 4 bytes for any type, padding is added to ensure 4-byte lengths. 

A special C-like language called XDR has been developed 
to simplify the handling of XDR-format data. It can be used 
from within other programming languages. 

Network File System Protocol

The NFS protocol is composed of a set of RPC procedures. It is not a protocol in the 
conventional sense of defining a complex handshaking process between two machines. 
Instead, it is a method of communicating information about a procedure to be run. NFS 
uses UDP and has a port number of 2049 assigned. This port number is nonsense; it arises 
from an error in the original implementation that could not be corrected subsequently 
because of compatibility issues. Because the port numbers are assigned by the port 
mapper, this number has no real meaning. 

NFS was designed to be a stateless protocol, meaning that the machines using NFS would 
not have to maintain state tables to use the protocol. Also, it was designed to be robust, 
meaning that after failures (of a connection or a machine) the system could recover 
quickly and easily. 

The NFS protocol is difficult to describe without introducing some programming, because 
the system is described in terms of the XDR language. This type of discussion is beyond 
the scope of this book; for more information, refer to the RFCs. However, it is possible to 



convey a sense of the protocol's contents through an overview of its capabilities and 
features. 

To understand the NFS procedures that comprise the protocol, it is necessary to examine 
the data structures and objects in the protocol. NFS defines a set of constants that are 
used to establish various parameters, such as the number of bytes in a path name, the 
maximum number of bytes in a read or write request, or the size of an NFS pointer. These 
are called protocol constants and should be the same for all implementations of NFS. 

A data object is a set of variables or values that are 
combined in one entity, much as an entry in a telephone book is 
actually composed of a name, address, and telephone number. 
All three variables or values combine to form a single entry or 
object. 

Several data objects are used by NFS to define files and their attributes. Because NFS 
deals specifically with files, these objects are important to the protocol. One data 
object is the file handle (or fhandle), which uniquely identifies a file on the server. File 
handles are provided in all NFS messages that refer to the file. As with most NFS data 
types, the file handle is a 32-byte field of free format that is understandable by the 
server. For example, a UNIX file is uniquely defined by its device major and minor 
numbers and its inode number. The filename itself is not used. 

A data object is used for the file type (called ftype), which defines all the kinds of files 
known by NFS. These mimic the UNIX file types, including a regular file (any kind of 
data), a directory (which is a file entry in UNIX), links (which are several pointers 
under different names to the same file) and both block and character mode files. 

Also used is a data structure for the file attributes, called fattr. This defines the 
permissions of the file, the times of access, the owner, and several other parameters. This 
is necessary whenever a file read or write is performed, because the attributes must be 
correct to allow the procedure to continue. (The attributes can be changed by another 
NFS procedure called set attributes or sattr.) 

These data objects can be combined into a larger entity using a discriminating union. A 
discriminating union is a combination of several data objects that are given a single label. 
These discriminating unions can be thought of as a label followed by data, which might 
differ depending on the outcome of a procedure. For example, after a procedure has been 
executed, a discriminating union might be a label followed by either an error message or 
the result of the procedure, if it executes properly. The union, though, is referred to by 
the label and doesn't care about the contents in the data area. This type of structure is 



used to simplify programming. 

Seventeen procedures (and a NULL procedure) are defined within the NFS protocol. 
These procedures are summarized in Table 12.1. This book doesn't go into detail about the 
procedures, as they are not relevant to the level of discussion. The RFC covers them all 
in exhaustive detail. 

Table 12.1. NFS procedures.

Name Description 

Null Null procedure 

Fetch file attributes Returns the attributes of a file 

Set file attributes Sets the attributes of a file 

Read file system root Not used; now obsolete 

Lookup filename Returns the file handle corresponding to a filename 

Read contents of link Returns details of symbolic links to a file 

Read file Reads a file 

Write to cache Not used 

Write to file Writes a file 

Create file Creates a new file and returns the new file's handle 

Delete file Deletes a file 

Rename file Renames a file 

Generate link Creates a link to a file (same file system) 

Generate symbolic link Generates a symbolic link (across file systems) 

Create directory Creates a new directory 

Delete directory Removes a directory 

Read directory Returns a list of files in the directory 

Read file system attributes Returns information about the file system 

Programmers might have noticed the lack of any open and close file functions within 
NFS. This arises from the stateless nature of the protocol. When a file must be opened, 
the local NFS process handles it, not the remote process. This allows for better control 
of files and ports after failure of a machine or a connection. 



Mount Protocol

In today's introduction I mentioned that NFS works by mounting an NFS server file 
system onto a client file system. As you have just seen, however, the NFS protocol is 
actually about file access and information, not connecting file systems. This file system 
mounting procedure is dealt with as a separate issue by the NFS product, using the 
Mount protocol. Mount uses UDP. 

The Mount protocol is involved in returning a file handle from the server to the 
client, enabling the client to access an area on the server file system. The protocol 
returns not only the file handle but also the name of the file system in which the 
requested file resides. Mount consists of a number of procedures that facilitate 
communications between the client and server, designed especially for dealing with 
files. 

A process called mountd takes care of handling the mount protocol at both ends of a 
connection. The mountd process maintains a list of machines and path names that are 
involved in a mount operation. Once a mount has been performed, NFS can continue 
operating without referring back to Mount at all. This lets Mount continue to modify 
its internal tables without affecting ongoing sessions. This can cause a problem if a 
client crashes and reconnects. The server still has the original connections listed in its 
internal Mount tables. To correct this problem, most NFS clients send a command 
(called UMNTALL, or unmount all) to all NFS servers when they boot. 

The Mount protocol is involved only during the original 
connection between a client and a server. The mountd process 
keeps track of connections, but once the connection is 
established, the Mount protocol relinquishes all control to 
NFS. All NFS needs to access a file system is a valid file handle 
(which Mount provides when the connection is made). 

As mentioned earlier, the Mount protocol consists of a set of procedures. These are 
summarized in Table 12.2 and are self-explanatory. 

Table 12.2. Mount protocol procedures.



Name Description 

NULL Null 

MNT Mounts a file system and returns the file handle and file system name 

UMNT Unmounts a server file system, deleting the entry from the Mount table 

UMNTALL 
Unmounts all server file systems used by the client and updates the 
Mount table 

EXPORT Provides a list of exported file systems 

DUMP 
Provides a list of the file systems on the server that are currently 
mounted on the client 

Some versions of NFS enable an automount capability, in which the remote file systems 
are mounted only when required. This prevents them from being attached for extended 
periods of time and simplifies administration. The process of automounting is completely 
transparent to the user. 

The automount capability is built upon NFS's procedures, but it performs a few clever 
tricks. The automounter is not part of NFS but is an application that sits on top of it. 
Symbolic links are the key to the automounter's operation. 

File Locking

Occasionally a system administrator wants to prevent access to an NFS-available file 
system. Such instances occur regularly during maintenance, software updates, or to 
protect data during a particular process. UNIX has the capability to lock a particular 
file by changing permissions, and the same can be done for file systems to some extent, 
but it would seem intuitive that locking a file system is more involved than simply 
locking a file or two. The capability to lock file systems from access was not developed 
with the original NFS product but was implemented as a parallel service after NFS 
became more widely available. 

Separating functionality (such as file locking) into 
separate protocols or procedures is consistent with both the 
OSI and NFS philosophies. This also enables better portability 
and compatibility across platforms. 



File system locking is handled by several protocols and procedures, involving a few 
daemon processes. In the original file locking system developed by Sun Microsystems, a 
lock daemon called lockd was used. This requires that every RPC activity that involves 
a lock communicates with the process, even when it is on another machine. The 
communications between RPC and lockd use a protocol called Kernel Lock Manager 
(KLM), which rides on UDP. 

Whenever a lock procedure is called, lockd decides whether it can handle the task on 
the local machine or whether messages have to be sent to remote lockd processes (on 
other machines). Communications between different lockd processes are through 
another protocol called the Network Lock Manager (NLM). There are several versions 
of both KLM and NLM in use, with implementations available for most hardware 
platforms. 

A process called statd (status monitor) monitors the state of locks and handles queries 
against a locked file system. This is necessary so that a new query against a locked file 
system can be queued (if it is locked for a short time) or rejected (if the file system is 
locked for a while). 

There are several built-in protection systems for file locking, such as automatic timers 
to prevent infinite locking after a machine crash, conflicting requests for locks, and a 
short period for completion of existing procedures before a lock is completed. These are 
all defined and explained in the RFC. 

Remote Execution Service (REX)

The Remote Execution Service (REX) is designed to enable a user to run commands on 
another machine with full environment variables, without incurring the overhead of 
processes such as Telnet, rlogin, or rsh. REX uses a daemon called rexd that runs on the 
server and employs NFS's services. (Remember that each machine can be both client and 
server, so most multitasking machines on a network can run rexd.) REX is commonly used 
when some applications are installed on only a few machines but should be available to 
all users. 

REX has an important advantage over the other UNIX utilities for this type of service. 
It enables access to the local machine's data while executing the command on the 
remote. This enables a user to run an application on another machine while accessing 
data files on the local machine. It also enables another machine's resources to be used 
without starting a user shell process or logging into the remote machine. 



To run an application or execute a command on a remote machine, the REX on command is 
used. The syntax adds the name of the machine on which the command is to be executed 
and the command to run. The following code gives an example of this: 

$ hostname

tpci_hpws4

$ cat file1

This is the file "file1" on "tpci_hpws4".

This is the client machine.

$ on merlin hostname

merlin

$ rsh merlin cat file1

cat: cannot open file1

$ on merlin cat file1

This is the file "file1" on "tpci_hpws4".

This is the client machine.

This example shows the remote machine executing a cat command on a local file. When 
the remote machine runs commands using on, an identical environment to the client is 
established on the remote, including user and group IDs and environment variables. So, 
if the remote machine in the previous example had a file called file1, but it was not in 
the search path of the process running the command, the system would still refer back 
to the client for the file. 

rusers and spray

Two utilities available to NFS users are simple examples of RPC programs. They are also 
useful to the user who wants to check the status of connections and the load on a 
remote machine. 

The spray program is similar to ping in that it sends a batch of messages across the 
network and waits for replies. Several supported options can configure the use of spray. 



When the spray command is issued with the -c option, it sends a supplied number of 
datagrams to the remote machine and times the results. A typical use is shown here: 

$ spray -c 200 beast

sending 200 packets of length 86 to beast...

   in 18.3 seconds elapsed time,

   4 packets (2.00%) dropped by beast

Sent:  10 packets/sec, 912 bytes/sec

Recd:   9 packets/sec, 862 bytes/sec

The rusers program gives you an idea of who is logged into remote machines. A typical 
output is the following: 

$ rusers

beast.tpci.com       tparker  bsmallwood  rmaclean

merlin.tpci.com      ychow  etreijs  tgrace

tpci_hpws3.tpci.com  tparker  sysadm

tpci_hpws4.tpci.com  pepper

As shown, the output from the rusers program includes the machine name and the list of 
users on that machine. Some implementations support options for rusers, whereas some 
have slightly differing output. 

Configuring NFS

Many people love using the NFS service when they are faced with it as a user but are 
scared to configure it when acting as a system administrator. The general assumption is 
that the process must be convoluted, complex, and require a lot of knowledge about the 
operating systems. For this reason, many people don't bother with NFS, which is a shame 
because it is one of the most useful services TCP/IP has to offer. As you see in this 
section, it is not difficult to implement an NFS network. 

I configure NFS on two different operating systems to show the general process. I use an 



SCO UNIX machine as an example of a UNIX installation, and a Windows for Workgroups 
system to show setting up a client and server NFS PC system. I start with the UNIX 
machine, because UNIX is most often associated with NFS servers. 

Configuring UNIX as an NFS Server

The NFS service makes extensive use of the RPC service. For this reason, the RPC server 
daemon must be running for NFS to be implemented. On some UNIX systems you can check 
whether RPC is active by issuing this command at the shell prompt: 

rpcinfo -p 

You should see a list of all the RPC servers currently running on your machine. If RPC 
is running properly, you see four rpcbind listings (two for UDP and two for TCP) and an 
entry for pcnfsd, the NFS daemon. This command doesn't show all this output for some 
versions of UNIX, including SCO UNIX. 

For SCO UNIX, NFS is started and stopped by a script called /etc/nfs. This can be linked 
into the startup routines to load NFS automatically when the system boots by linking 
the /etc/nfs file to the file /etc/rc2.d/Sname. To shut down NFS properly, you also need 
to link /etc/nfs to the file /etc/rc0.d/Kname. (On other UNIX implementations the 
filenames change, but the general approach is the same.) If you want to start and stop 
the NFS daemon manually, you can do this with these commands: 

/etc/nfs start

/etc/nfs stop

The /etc/nfs command starts up and shuts down the NFS server daemon when the 
appropriate command is issued. When you issue the start command, the daemons that are 
activated are echoed to the screen: 

$ /etc/nfs start

Starting NFS services: exportfs mountd nfsd pcnfsd biod(x4)

Starting NLM services: statd lockd

With a stop command, you see a message that the daemons and server are shut down: 



$ /etc/nfs stop

NFS shutdown: [NFS Shutdown Complete]

For a filesystem on a SCO UNIX machine to be available to NFS clients on other 
machines, the filesystem must be listed in the UNIX file /etc/exports. With some versions 
of UNIX, the NFS daemons are started automatically if the /etc/exports file exists 
during boot time. This invokes a program called exportfs that sets the filesystem as 
available for NFS use. If any changes are made to the /etc/exports file while the system 
is running, you can issue another exportfs command, or simply reboot the machine, to 
make the changes effective. 

The format of the /etc/exports file is as follows: 

directory [ -option, option ... ]

The directory is the pathname of the directory or file to be shared (exported, in NFS 
terminology) by NFS, and the options are one of the following: 

ro: Export the directory as read-only. (The default value is to export as 
read-write.) 

rw=hostnames: Export the directory as read-mostly, which means read-only 
to most machines but read-write to machines specifically identified. 

anon=uid: If an NFS request comes from an unknown user, use uid as the 
effective user ID for ownership and permissions. 

root=hostnames: Gives root access to the root users from a specified 
machine. 

access=client: Gives mount access to each client listed. A client 
can be a host name or a net group. 

An example of an /etc/exports file helps show the use of these options. A pound sign (#) 
on a line means a comment. Here's a sample /etc/exports file: 

/usr/stuff -ro            # export as read-only to anyone

/usr   -access=clients    # export to the group called 
clients



/usr/public               # export as read-write to anyone

NFS is now ready for use on the SCO UNIX server. You might notice that SCO UNIX 
creates a new file called /etc/xtab that contains the filesystem information from the 
exports file. You should not modify the contents of the /etc/xtab file or the NFS server 
cannot function properly. The /etc/xtab file is generated by the exportfs command. 

Some versions of UNIX use the share command to set up a directory for export. (SCO 
UNIX does not support the share command because the functions are duplicated in the 
/etc/exports file.) The syntax of the share command is as follows: 

share -F nfs -o options -d description path

The -F option indicates that the directory or files given in the path are to be set as NFS 
filesystems. The options following -o set the type of access in the same way as the SCO 
UNIX options for the /etc/exports file shown earlier. The -d option can be followed by a 
descriptive statement used by clients to describe the export filesystem. For example, to 
share the directory /usr/public as read-write (the default), you could issue this 
command: 

share -F nfs -d "Server public directory" /usr/public

Options can be combined, as shown in this example: 

share -F nfs -o ro=artemis,anon=200 -d "Book material" 
/usr/tparker/book

This command shares the directory /usr/tparker/book, which is tagged with the 
description "Book material", with everyone as read-write except for a machine called 
artemis, for which it is read-only. Any anonymous users accessing the system use UID 200. 

The share command by itself usually shows a list of all filesystems that are exported. 

Setting Up a UNIX NFS Client

UNIX can mount an NFS exported filesystem from another machine with the mount 



command. The syntax for mounting an NFS filesystem is as follows: 

mount -F nfs -o options machine:filesystem mount-point

The -F option tells the mount command the filesystem is an NFS filesystem; 
machine:filesystem is the name of the remote machine and the filesystem to be mounted; 
and mount-point is the location in the current filesystem where the remote filesystem is 
to be mounted. Some versions of UNIX change the syntax a little. For example, SCO 
UNIX uses a lower case f and uppercase NFS to indicate the type. Check the man pages 
for the exact syntax on your version. 

In use, mount is easy to work with. For example, the command 

mount -F nfs artemis:usr/public /usr/artemis

mounts the filesystem /usr/public on the remote machine called artemis onto the local 
machine in the directory called /usr/artemis. The mount-point (in this case /usr/artemis) 
must exist for the mount to succeed. 

The -o optional component of the mount command can be used to set options from the 
following list: 

rw: Sets the mount to read-write (the default value) 

ro: Sets the mount to read-only 

timeo=x: Gives a timeout value in tenths of a second to attempt the mount 
before giving up 

retry=x: Retries x times before giving up 

soft: Forces the client to give up the mount attempt if an acknowledgment 
is not received from the remote machine 

hard: The client continues trying to mount the filesystem until successful 

intr: Enables the keyboard to interrupt the mount request; 
otherwise, the attempts go on forever 

Any of these options can be combined in one mount command, as they could be for the 
share command. For example, the command line 



mount -F nfs -o soft,ro artemis:usr/public /usr/artemis

tries to mount the /usr/public directory on artemis as read-only, but it gives up if the 
mount attempt is not acknowledged by artemis. The mount command by itself usually 
shows all mounted filesystems. 

Setting Up Windows-Based NFS 

Several TCP/IP suites and application packages for Windows 3.x, Windows 95, and 
Windows NT provide NFS support. One of the widest used is NetManage's ChameleonNFS, 
which can be used under any of the Windows operating system versions. ChameleonNFS 
enables a Windows machine to act as both client and server for NFS file access. In other 
words, another machine can access files on the ChameleonNFS machine, and the 
ChameleonNFS machine can access files on other NFS-equipped machines. 

Implementing NFS access on a Windows machine can vary from very complex to very easy, 
depending on the software package that provides the NFS capabilities. Some available 
NFS products don't offer server capabilities, enabling only NFS client behavior on the 
installation machine. Carefully check the software before you purchase or install it to 
ensure you are getting a product that meets your NFS requirements. In this section I 
continue with ChameleonNFS as the example NFS software, because it is relatively easy 
to install, configure, and use. I use Windows 3.11 as the operating system example. 

ChameleonNFS relies on a software daemon called Portmapper, which maintains a list of 
all currently registered network services (including NFS). Portmapper is loaded 
automatically when the Windows machine boots in most installations. ChameleonNFS is 
set to record mounted drives to the WIN.INI file (for Windows 3.x at least) whenever a 
Windows session is saved. This enables currently mounted drives to be remounted 
automatically when the next Windows session is started. 

ChameleonNFS server activities such as administration and configuration are conducted 
through the NFS icon in the NetManage program group. The sole exception is printer 
handling for network devices, which is handled through the Printer icon on the 
Control Panel. NFS client activities are done through normal Windows applications, 
such as the File Manager and Control Panel. Drives are mounted and unmounted 
through the File Manager, whereas all other options are handled through the 
Network panel in the Control Panel. 

Once installed, ChameleonNFS lets you mount a remote directory on an NFS server 



from the File Manager. Select the Network Connections option from the Disk pull-down 
menu. This displays the Network Connections dialog shown in Figure 12.4. The remote 
machine name and the directory to be mounted are specified in this dialog. The mounted 
filesystem is usually mounted as another drive, not as part of an existing drive's 
filesystem. 

Figure 12.4. The Network Connections dialog lets you mount a remote filesystem 
using NFS. 

If you want to see all the filesystems that are available for mounting on a remote 
machine, use the Browse button. The remote machine name and all the filesystems 
available are listed, as shown in Figure 12.5. In Figure 12.5 the only filesystem that is 
showing as available on the machine called tpci is the root filesystem, which means the 
entire filesystem on the remote. You can't tell from this window whether it is set for 
special access rights such as read-only. 

Figure 12.5. When you specify the host name in the Browse dialog, all that remote's 
NFS filesystems are listed. 

Clicking the OK button after the remote machine name and directory name are filled in 
mounts the remote filesystem at the location you indicate in the window, as shown in 
Figure 12.6. This mounts the remote machine's root directory as drive H on the local 
machine. When you click OK to close the NFS dialog, the remote machine's filesystem is 
available from the File Manager. The drive icon shows that it is a network drive. 

Figure 12.6. This window shows that tpci's root directory is to be mounted as drive 
H on the local machine. 

To disconnect an NFS-mounted drive, use the Disconnect button on the Network 
Connections dialog. The drive icon should be removed from the File Manager to show 
that the mount is no longer in effect. 

Sharing a Windows Directory

ChameleonNFS can be used to share PC drives or directories with other users on the 
network. To share a drive, create a list of users who have access to the drive, unless 
everyone can mount the drives. The user access list is maintained under the NFS icon 
with ChameleonNFS. Start the NFS server process by clicking the NFS icon in the 
Chameleon program group. This displays the NFS main window. Clicking the Users menu 
item on the NFS window opens the Server Users window, shown in Figure 12.7. From here 
you can add and manage all access to your NFS available drives. To enter a user, type 
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the name, any password you want them to use (if you want a password), and a group and 
user ID number. Click the Add button, and the entry appears as part of the user list. 

Figure 12.7. The Server Users window lets you set access rights to your NFS drives. 

When you have entered all the users, click the Save button to write the entries to the 
disk. If you don't save the table, any changes are lost. Figure 12.8 shows two users on 
the access table. 

Figure 12.8. Two users are allowed to access the local machine's NFS drives. 

Next, you need to set the drives and directories that can be exported by other clients. 
Use the Exports menu item in the NFS window to display the Server Exports window. Use 
the directory browser to move between the drives and directories, selecting the ones 
you want to export. Click the Add button to enter the drive and directory combination 
to the export list. 

Figure 12.9 shows the Server Exports window with two specific directories and one 
entire drive set to be exported. For each drive or directory you can set access rights by 
clicking the Access button. This displays the Access dialog, which you can use to select 
the proper permissions and access rights. 

Figure 12.9. The Server Exports window with directories and drives defined for 
NFS access. 

Once the access permissions are set, a remote client can access your NFS drives. The 
remote user is prompted for a password if you have set your system to require one. 

Network Information Service (NIS)

The Yellow Pages (YP) protocol is an RPC application layer service (like NFS) that 
provides a versatile directory service. Because of copyright restrictions, Yellow Pages 
was renamed to Network Information Service (NIS), although both terms are in common 
use. NIS was developed for several reasons, but the one that affects users the most is 
access permissions. The effect these permissions have on users is generally transparent 
except for one major advantage. 

If you are a user on a large network and you tend to connect to other machines 
frequently (through Telnet or FTP, for example), you must maintain accounts on each 
machine you connect to. Thus, you would need user accounts on every machine you 
could conceivably want to access. Maintaining the passwords on a large number of 
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machines is awkward, because you must log into each one and perform password changes. 
NIS was developed to enable one single, central user file to be shared over the 
network, requiring only a single entry to enable access to all machines (unless specific 
restrictions are imposed), and simplifying a password change on all machines to one step. 

In RPC terms, this combination of user ID and password works on the RPC authentication 
procedures. RPC uses the user and group IDs to grant access to files, so it is necessary for 
the client and server's user and group IDs to match. Without NIS this could be very 
difficult to implement because each machine's user file might have the same names, but 
their user IDs might not coincide. Worse, another user with a matching user ID on 
another machine could access files on your machine as though he or she were logged in 
as you. 

NIS is a distributed access system in that each machine on the network that uses NIS 
accesses a central server, called the NIS master or ypmaster (depending on the version), 
for access information. On larger networks, to spread the load, and for all networks as 
a backup contingency, several other machines are designated as slaves or ypslaves that 
maintain up-to-date access information. In case of a failure of the master server, a slave 
takes up the functions. NIS uses both TCP and UDP for communications. 

There are two versions of NIS in general use. The first 
release (Version 1) had serious problems under certain 
circumstances, so Version 2 was quickly released. However, some 
systems still use the older version. 

The NIS protocol has a set of procedures defined within the RFC. These enable a search 
for master servers, access to the user files, and system management functions. Another 
procedure is used to transfer copies of the master files. Several machines are grouped 
together into one NFS subnetwork, called a domain (not to be confused with the 
Internet domain). Each domain has master and slave machines. 

NIS keeps the access information in a set of maps, each map corresponding to a particular 
area or domain of a network. This allows for several groups to use the same NIS master 
but have different access permissions. The NIS maps do not have to correspond to DNS 
domains, enabling more versatility in configuration. Maps consist of a set of records in 
ASCII format, each with an index key for fast lookup. The index key is usually the user 
name. The records have the same structure as normal user files (such as UNIX's 
/etc/passwd), both for compatibility and for simplicity. 



The use of NIS does not negate the need for a complete set 
of access files on each machine, because NIS is loaded after the 
machine has been booted (and these files are read). The stand-
alone files should have access for a system administrator at 
least, although it is good practice to also include the most 
frequent users in case of a network crash preventing access to 
the NIS directories. 

NIS is not restricted to the users of a system. Any file can be set up to use NIS, such as 
the list of machines on a network (UNIX's /etc/hosts file). Thus, only one change needs 
to be made to these files on any network. A set of aliases also can be managed by NIS. 

Several NIS-specific commands are involved with the protocol, although most system 
administrators set up aliases to minimize the impact on users. For most users, only one 
command is necessary on a regular basis. For UNIX systems, this is the command yppasswd 
to change a user's password. This is usually aliased to passwd, the normal password 
change command. Application developers might have to examine the NIS protocol in more 
detail when writing client/server code that runs on an NIS-based system, but the effects 
of the distributed system are usually transparent. 

Configuring NIS

Earlier today you saw how NIS can be used to provide network-wide access to files that 
would normally be local, offering greatly improved access for users and administrators. 
With NIS active, you don't need to maintain a separate current /etc/passwd file on each 
UNIX system; instead, you can use the NIS master password files to enable global access 
to any machine on the network. 

In this section I look at how to set up NIS on a simple UNIX network. There are many 
variations of network architecture and configurations, some of which get awfully 
complex for a network administrator. Although the principles of setting up NIS and NIS 
domains are the same for all networks, some extra steps are required on very complex 
setups. For the most part, I look at the basics only. The files that are normally handled 
by NIS are as follows: 

/etc/ethers Ethernet MAC to IP address mappings 

/etc/group Group access information 



/etc/hosts IP address to hostname mappings 

/etc/netmasks IP network masks 

/etc/passwd User access information 

/etc/protocols Network protocol and number mappings 

/etc/rpc RPC numbers 

/etc/services Port number to TCP/IP protocol mappings 

I look at the most commonly used files as I set up the NIS master and NIS slave, as well 
as looking at what has to be changed on any client machines that want to use NIS. 

Setting Up the NIS Domain 

NIS domains are usually assigned to group machines together with an NIS master and 
one or more NIS slaves as backup. An NIS domain doesn't have to be the same as an 
Internet domain, although for most networks they are identical (in other words, the 
entire network is the NIS domain). The NIS domain has to have a name, which can also 
correspond with your Internet domain name. Alternatively, you can set up subsidiary 
domains for small logical groups in a large corporation, such as domains for accounting, 
research and development, and marketing. 

To set up an NIS domain, you need to decide on the domain name and know the IP address 
of the NIS master and any NIS slaves. If you have more than one NIS domain established, 
you need to know which machines are handled by which NIS master. Each machine on the 
domain (whether one or many domains are established) must be entered into a 
configuration file to enable the client machine to use NIS. 

To set up the NIS domain, you need to log into each client machine on the network and 
set up the domain name with the following command: 

domainname domain

domain is the domain name the machine uses. You need to be logged in as root or an 
administrative account with access to the root utilities to set these values. Because 
this type of command is effective only until the machine is rebooted, it is better to enter 
the domain name in one of the startup rc scripts. These differ for each version of UNIX, 
so you should check your rc commands to find out where to embed the domain name. 



Usually it is in a file under the /etc/rc.d directory. 

NIS Daemons

NIS uses several daemons on the server and on all clients to enable the NIS system. On 
the NIS master and any NIS slaves, the daemon is usually called ypserv. The ypserv 
daemon waits for incoming client requests for service, then handles them. 

On the clients, the process ypbind is used. This is responsible for connecting with the NIS 
master when the machine boots and determining any resolution steps necessary to 
handle logins and other network configuration information handled by NIS. The 
process of having ypbind connect to the NIS master and establish procedures is called a 
binding, because the client is bound to the master for requests. 

The binding process begins with ypbind sending out a broadcast message for any NIS 
masters on the network to respond with their IP address and the port number to send 
requests on. If more than one NIS master responds to the request, only the first received 
reply is used. If for some reason ypbind finds it isn't getting replies from the NIS master, 
it assumes that the master has crashed and retransmits a request for a master. 

You can find out which NIS master any client machine is bound to with the command 
ypwhich. It usually responds with the name of the NIS master, as shown here: 

$ ypwhich

merlin

Setting Up an NIS Master

Setting up an NIS master is usually straightforward. Begin by verifying the existing 
files on the master machine, such as /etc/passwd and /etc/group, to ensure that the 
information is accurate and current. You should remove any expired or unwanted 
accounts, for example, and verify that all the login directories and commands are 
correct. While you are examining the /etc/passwd file, check to make sure that all 
accounts have passwords. If they don't, either assign a password or remove the account. 
With a network-wide NIS system in place, anyone can exploit these security holes to 
gain access to any machine on the network, including the NIS master and gateway 



machines. 

Once the files are ready for NIS map generation, make sure you are logged in as root (to 
set the proper ownerships and ensure full access to the filesystem). The NIS maps are 
generated from the standard UNIX files, using the ypinit command with the -m option. 
The -m option indicates that this machine is the NIS master. From the root prompt, issue 
the following command: 

/usr/sbin/ypinit -m

The path to the ypinit program might be different on your UNIX system. Check the path 
if the command produces an error message when trying to execute. 

When the ypinit command executes, it scans all the NIS files named in the file /var/yp 
and produces the NIS maps that are used by the client processes. The /var/yp file might 
have a different directory name on some systems, such as SCO UNIX, which uses /etc/yp as 
a directory for all NIS files. Check your UNIX system documentation or man pages for 
proper file locations. The /var/yp file contains a list of all the maps to be generated, 
and usually you do not have to make any changes to this file. 

A new directory (usually called /var/yp/domainname, where domainname is the NIS domain 
name) is created. The maps are placed in this new directory. If you are setting up more 
than one domain all handled by the same NIS master machine, the maps for each domain 
are beneath the domain name's subdirectory. 

As the last step in ypinit, you are asked which machines are NIS slave servers, at which 
point you should enter their names. The slave names are saved in a file in the domain 
directory. 

After the maps have been generated properly, you can start the ypserv daemon. It is best 
to automate the startup by editing the startup rc files to do this for you when the 
machine boots. There is a section in an rc file (usually the one that starts RPC) that 
looks like this: 

if [ -f /etc/yp/ypserv -a -d /var/yp/`domainname` ]

then

  /etc/yp/ypserv

fi

This script checks for the existence of the directory /var/yp/domainname, where 



domainname is the domain name for your NIS domain. The entry on the first line where 
domainname is located must be in single back quotes, which means the shell should 
execute the domainname command and use the results. If the directory exists, the ypserv 
daemon is started. You should replace the directory paths with those used by your UNIX 
system. 

To manually start the ypserv daemon, log in as root and issue the command 

/etc/yp/ypserv

or whatever the path to your ypserv daemon is. 

Next, you need to start the ypbind daemon on the server, too (otherwise, ypserv can't 
find the maps). Again, this is usually done through the rc startup scripts with an entry 
like this: 

if [ -d /var/yp ]

then

  /etc/yp/ypbind

fi

Again, you should verify that the directory path is correct. You can start the ypbind 
daemon manually by issuing it on the command line when logged in as root. Make sure 
the directory path is correct when you do so. 

If you want to perform a quick test of the NIS daemons, issue a command like this one at 
the command line: 

ypmatch tparker passwd

The ypmatch command asks NIS to use the maps to match up the next argument with the 
map of the third argument's name. In this example, ypmatch is instructed to look in the 
passwd file (passwd is the alias to passwd.byname) for the entry for tparker. You should 
get back the line that matches. You can use any combination of map alias and entry that 
you know exists to test the NIS server daemon. 

Setting Up NIS Slaves



To set up an NIS slave, the NIS master must be configured and running. When you are 
sure the master is operational, log in as root to the machine to be set up as the NIS 
slave. The domain name of the slave must be properly set before the configuration can 
proceed, so check the startup rc commands for the entry that sets the domainname 
variable or use the domainname command to set the domain name. 

To set up the NIS slave and propagate the NIS files from the master to the slave, issue 
the command 

/etc/yp/ypbind

substituting for whatever path is correct on your system. Check that the binding to the 
master is correct by issuing the ypwhich command. It should return the NIS master name. 

Finally, issue the command 

/etc/yp/ypinit -s servername

where the path is correct and servername is the name of your NIS master. The ypbind -s 
option sets the local machine up as a slave. The ypbind command sets up directories on 
the local machine and transfers all the maps from the master to the slave. 

After the setup is complete, you can test the slave setup with the ypmatch command, as 
shown in the previous section. 

To update the maps on the slaves at regular intervals, the ypxfr command is used on the 
slave, followed by the name of the map to be transferred. For example the command 

ypxfer passwd.byname

transfers the passwd.byname file from the master to the slave. Most administrators 
create a set of cron entries for transferring all the NIS files at regular intervals (such 
as nightly). You can also use a script file executed by a network administrator. 

Setting Up NIS Clients



Setting up an NIS client requires that you have the domainname set properly, either 
with the domainname command or an entry in the rc startup files, and that the ypbind 
command has been issued properly and the NIS client is bound to the NIS server. 

As mentioned earlier, when an entry in the /etc/passwd or /etc/group file must be 
searched for a match, the local files are examined first, then the server is queried if no 
match is found. To instruct your client to go to the NIS master to match a login, you 
need to add the following entry to the bottom of the /etc/passwd file: 

+:*:0:0:::

If you know the format of the /etc/passwd file entries, you will recognize this as a legal 
entry with no information specified. The plus sign in the username field is to instruct 
ypbind to query the NIS master. This is called a marker entry. The plus sign entry can be 
anywhere in the file. When it is reached, NIS is used, then the file is read as before if no 
match has been found. 

RPC and NFS Administration

RPC and NFS have two primary administration tools available for providing status 
updates and indications of trouble within the system: rpcinfo and nfsstat. Usually these 
tools are not available to end users, although it is useful to know of their existence 
and their role in monitoring NFS and RPC. 

Running any single tool is usually not sufficient to isolate a problem. Often one tool 
reports a problem with a port, but upon closer examination it is found that the port is 
functioning but the process at the other end died. Therefore, these tools are designed 
to be used as a complement to each other until an accurate diagnosis can be reached. 

rpcinfo

The rpcinfo program monitors the port mapper of the machine on which it is running, and 
through the network, the port mappers of servers. Because the port mapper is the 
program that controls access to RPCs, this type of information is important in tracking 
problems. The rpcinfo program can display the contents of the mapping tables, showing 



the port and program numbers for each connection, and can activate remote servers for 
testing a connection. 

Typically, rpcinfo is called with the -p option to show the list of RPC programs that are 
currently tracked by the port mapper. An optional machine name can be added to display 
only connections with one machine. A typical output from the rpcinfo program is shown 
here: 

$ rpcinfo -p

   program vers proto   port

    100000    2   tcp    111  portmapper

    100000    2   udp    111  portmapper

    100008    1   udp   1026  walld

    150001    1   udp   1027  pcnfsd

    150001    2   udp   1027  pcnfsd

    100002    1   udp   1028  rusersd

    100002    2   udp   1028  rusersd

    100024    1   udp   1029  status

    100024    1   tcp   1024  status

    100020    1   udp   1034  llockmgr

    100020    1   tcp   1025  llockmgr

    100021    2   tcp   1026  nlockmgr

    100021    1   tcp   1027  nlockmgr

    100021    1   udp   1038  nlockmgr

    100021    3   tcp   1028  nlockmgr

    100021    3   udp   1039  nlockmgr

In case of a problem contacting the port mapper, rpcinfo returns an error message. In 
such a case, the port mapper is not functioning correctly and there may be no contact 
with other machines. A check using ping verifies this. An example of this kind of fatal 
error message is shown here: 



$ rpcinfo -p

rpcinfo: can't contact port mapper:

RFC: Remote system errer -125

Specific connections can be tested with rpcinfo by using the machine and process name, as 
the following example shows: 

$ rpcinfo -u merlin walld

program 100008 version 1 is ready and waiting

Note that the -u option is used for UDP connections, whereas -t must be used with TCP 
connections. In this example, the client rpcinfo sent a request to the program specified 
and waited for a reply. A successful reply results in the message shown here. If a reply 
is not received before a timer expires, an error message is displayed. 

In the previous sample output, there is a process called pcnfsd, which is an RPC server 
developed for use with MS-DOS based machines. It handles access rights and spooling 
services for the DOS side, while simplifying the DOS machine's access to NFS services. 

nfsstat

The nfsstat program, as its name suggests, provides statistics about the number and type 
of RPC requests that are made. It is usually called without an option, although several 
exist (depending on the implementation and version) to show specific statistics or sample 
only certain parts of the connection. 

The output from nfsstat is shown here for a typical small network: 

Server rpc:

calls      badcalls   nullrecv   badlen     xdrcall

10465      0          0          0          0

Server nfs:

calls      badcalls



10432      0

null       getattr    setattr    root       lookup     
readlink   read

1 0%       24 0%       1 0%      0 0%       10123 0%   0 0%       
5 0%

wrcache    write      create     remove     rename     link       
symlink

0 0%       2 0%       0 0%       1 0%       0 0%       1 0%       
0 0%

Client rpc:

calls      badcalls   retrans    badxid     timeout     wait      
newcred

8273       2          0          0          0           0         
0

Client nfs:

calls      badcalls

8263       0

null       getattr    setattr    root       lookup     
readlink   read

1 0%       24 0%       1 0%      0 0%       10123 0%   0 0%       
5 0%

wrcache    write      create     remove     rename     link       
symlink

0 0%       2 0%       0 0%       1 0%       0 0%       1 0%       
0 0%

The output from nfsstat is useful for diagnosing connection problems. The value shown 
as badcalls shows the number of defective RPC message processed by the system. The 
values for nullrecv and badlen show the number of empty or incomplete messages. The 
value for xdrcall shows the number of errors in understanding messages. 

For the client side, badxid shows the number of received messages that did not match 
with a sent request (based on the identification numbers). The timeout and retrans 



values show the number of times a message had to be resent. If these numbers are high, it 
usually means the connection is too slow or there is a fault with UDP. The wait value 
shows the number of times a process had to be delayed because of a lack of available 
ports. 

These types of statistics are useful for configuring RPC properly. System administrators 
can adjust (tweak) values for the NFS system and monitor their effects on performance 
over time. 

Summary

The Network File System has a reputation for being complex and ornery. It is neither. 
Instead, NFS is an elegant solution to a problem and one in common usage. Today I have 
examined the concept and basic architecture of NFS, hopefully without getting bogged 
down in the details. 

I have also shown you how NIS works, and how to set it up on a network. Although 
every network is not necessarily a target for NIS, it is a very handy service that is part 
of the TCP/IP family. 

Q&A

What does NFS do, in one sentence? 

NFS enables an application to read and write files residing on remote machines as 
though they were on the local filesystem. 

Define client and server as used in NFS. 

Despite complex definitions from the computer industry, this one is really easy. A client 
issues a request. A server answers it. 

What is the role of RPC in NFS? 

The Remote Procedure Call protocol handles message exchange between NFS-based 
systems. It is a set of procedures that can be called by clients. 



What does a port mapper do? 

The port mapper provides a correlation between the ports on a machine and the 
applications that use them. 

What does the Kernel Lock Manager do? 

The Kernel Lock Manager is involved in file locking, preventing access to files or 
filesystems. A file lock request is issued by clients when they want exclusive access to a 
file. The Kernel Lock Manager handles file lock requests. 

Quiz

1.  Show how the NFS layers compare to the OSI Reference Model. 

2.  Explain how a port mapper assigns ports. 

3.  What is External Data Representation? 

4.  What does the Mount protocol do? 

5.  What is REX? What advantage does REX offer other similar utilities? 

    



   

■     Network Management Standards
■     What Is SNMP?

■     Management Information Base (MIB)
■     Simple Network Management Protocol
■     Setting Up SNMP Under UNIX
■     SNMP Commands

■     Network Topologies
■     Configuring a Network
■     Monitoring and Basic Troubleshooting Utilities

■     Troubleshooting the Network Interface
■     Troubleshooting the Network (IP) Layer
■     Troubleshooting TCP and UDP
■     Troubleshooting the Application Layer

■     Security
■     Summary
■     Q&A
■     Quiz

— 13 — 
Managing and Troubleshooting TCP/IP

Today you will not learn how to configure and manage a network. The reason is simple: 
network management and configuration is a very complex issue that can be only briefly 
examined in a single chapter. If you are assigned the task of network administrator, 
there are a few good books available that help a little, but the only real teacher of 
network administration and troubleshooting is experience. The more you work with 
networks, the more you learn. Today's text presents an overview of network topologies 
and configuration issues and examines the basic steps in troubleshooting faulty TCP/IP 
systems. Remember that this is an overview only, intended to provide you with the 
background to the administration process. 

Traditionally, network management means two different tasks: monitoring and 



controlling the network. Monitoring means watching the network's behavior to ensure 
that it is functioning smoothly and watching for potential troublespots. Controlling 
means changing the network while it is running, altering the configuration in some 
manner to improve performance or affect parts that are not functioning correctly. 

On Day 1, "Open Systems, Standards, and Protocols," I looked at the ISO standards; ISO 
addresses networks, as well. ISO goes further than just two aspects of network 
administration, however, dividing network management into five parts defined within 
the Open Systems Interconnection Reference Model (OSI-RM). These five parts are 
called Specific Management Functional Areas (SMFAs) in the standard. The five aspects 
are as follows: 

●     Accounting management: Providing information on costs and account usage. 

●     Configuration management: Managing the actual configuration of the network. 

●     Fault management: Detecting, isolating, and correcting faults, including 
maintaining error logs and diagnostics. 

●     Performance management: Maintaining maximum efficiency and performance, 
including gathering statistics and maintaining logs. 

●     Security management: Maintaining a secure system and managing access. 

The five groups have some overlap, especially between performance and fault 
management. However, the division of the network management tasks can help account 
for all the necessary aspects. In some cases, large organizations have dedicated people 
for each group. For many smaller LANs, the role of handling all the problems usually 
falls to one person, who seldom worries about whether their actions are ISO-compliant. 

Network Management Standards

The Internet Advisory Board (IAB) has developed or adopted several standards for 
network management. These have been, for the most part, specifically designed to fit 
TCP/IP requirements, although they do whenever possible meet the OSI architecture. An 
Internet working group responsible for the network management standards adopted a 
two-stage approach to provide for current and future needs. 

The first step involves the use of the Simple Network Management Protocol (SNMP), 
which was designed and implemented by the working group. SNMP is currently used on 
many Internet networks, and it is integrated into many commercially available 
products. As technology has improved, SNMP has evolved and become more encompassing. 



The second step involves OSI network management standards, called the Common 
Management Information Services (CMIS) and Common Management Information 
Protocol (CMIP), both to be used in future implementations of TCP/IP. The IAB has 
published Common Management Information Services and Protocol over TCP/IP (CMOT) as a 
standard for TCP/IP and OSI management. 

Both SNMP and CMOT use the concept of network managers exchanging information 
with processes within network devices such as workstations, bridges, routers, and 
multiplexers. The primary management station communicates with the different 
management processes, building information about the status of the network. The 
architecture of both SNMP and CMOT is such that the information that is collected is 
stored in a manner that enables other protocols to read it. 

The SNMP manager handles the overall software and communications between the 
devices using the SNMP communications protocol. Support software provides a user 
interface, enabling a network manager to observe the condition of the overall system 
and individual components and monitor any specific network device. 

SNMP-managed devices all contain the SNMP agent software and a database called the 
Management Information Base (MIB). I look at the SNMP protocol and MIB layout later 
today, but for now a quick overview should help you understand how SNMP is used for 
network management. The MIB has 126 fields of information about the device status, 
performance of the device, its connections to different devices, and its configuration. 
The SNMP manager queries the MIB through the agent software and can specify changes 
to the configuration. Most SNMP managers query agents at a regular interval, such as 
fifteen minutes, unless instructed otherwise by the user. 

The SNMP agent software is usually quite small (typically less than 64KB) because the 
SNMP protocol is simple. SNMP is designed to be a polling protocol, meaning that the 
manager issues messages to the agent. For efficiency and small size of executable 
programs, SNMP messages are enclosed within a UDP datagram and routed via IP 
(although many other protocols could be used). There are five message types available 
in SNMP: 

●     Get request: Used to query an MIB. 

●     Get next request: Used to read sequentially through an MIB. 

●     Get response: Used for a response to a get request message. 

●     Set request: Used to set a value in the MIB. 

●     Trap: Used to report events. 



UDP port 161 is used for all messages except traps, which arrive on UDP port 162. Agents 
receive their messages from the manager through the agent's UDP port 161. 

Despite its widespread use, SNMP has some disadvantages. The most important might also 
be an advantage, depending on your point of view: the reliance on UDP. Because UDP is 
connectionless, there is no reliability inherent in the message sending. Another problem 
is that SNMP provides only a simple messaging protocol, so filtering messages cannot be 
performed. This increases the load on the receiving software. Finally, SNMP uses 
polling, which consumes a considerable amount of bandwidth. The trade-offs between 
SNMP and its more recent successor, CMIP, will make decisions regarding a management 
protocol more difficult in the future. 

SNMP enables proxy management, which means that a device with an SNMP agent and 
MIB can communicate with other devices that do not have the full SNMP agent 
software. This proxy management lets other devices be controlled through a connected 
machine by placing the device's MIB in the agent's memory. For example, a printer can be 
controlled through proxy management from a workstation acting as an SNMP agent, 
which also runs the proxy agent and MIB for the printer. 

Proxy management can be useful to off-load some devices that are under heavy load. 
For example, it is common under SNMP to use proxy to handle authentication processes, 
which can consume considerable resources, by passing this function to a less heavily 
used machine. Proxy systems can also affect the processing that needs to be performed at 
a bridge, for example, by having a proxy reformat the datagrams arriving, again to off-
load the bridge from that time-consuming task. 

After providing a quick overview, I can now look at SNMP in more detail. If you are 
satisfied with the overview, you can skip the next section, because most users never need 
to know about the make-up and layout of SNMP and MIB. If you want to know what's 
going on in a network, though, this information is invaluable. 

What Is SNMP?

The Simple Network Management Protocol (SNMP) was originally designed to provide a 
means of handling routers on a network. SNMP, although part of the TCP/IP family of 
protocols, is not dependent on IP. SNMP was designed to be protocol-independent (so it 
could run under IPX from Novell's SPX/IPX just as easily, for example), although the 
majority of SNMP installations use IP on TCP/IP networks. 

SNMP is not a single protocol but three protocols that together make up a family, all 
designed to work toward administration goals. The protocols that make up the SNMP 
family and their roles follow: 



●     Management Information Base (MIB): A database containing status information 

●     Structure and Identification of Management Information (SMI): A 
specification that defines the entries in an MIB 

●     Simple Network Management Protocol (SNMP): The method of communicating 
between managed devices and servers 

Peripherals that have SNMP capabilities built-in run a management agent software 
package, either loaded as part of a boot cycle or embedded in firmware in the device. 
These devices with SNMP agents are called by a variety of terms depending on the 
vendor, but they are known as SNMP-manageable or SNMP-managed devices. SNMP-
compliant devices also have the code for SNMP incorporated into their software or 
firmware. When SNMP exists on a device, it is called a managed device. 

SNMP-managed devices communicate with SNMP server software located somewhere on 
the network. The device talks to the server in two ways: polled and interrupt. A polled 
device has the server communicate with the device, asking for its current condition or 
statistics. The polling is often done at regular intervals, with the server connecting 
with all the managed devices on the network. The problem with polling is that 
information is not always current, and network traffic rises with the number of 
managed devices and frequency of polling. 

An interrupt-based SNMP system has the managed device send messages to the server 
when some conditions warrant. This way, the server knows of any problems immediately 
(unless the device crashes, in which case notification must be from another device that 
tried to connect to the crashed device). Interrupt-based devices have their own 
problems. Primary among the problems is the need to assemble a message to the server, 
which can require a lot of CPU cycles, all of which are taken away from the device's 
normal task. This can cause bottlenecks and other problems on that device. If the 
message to be sent is large, as it is if it contains a lot of statistics, the network can 
suffer a noticeable degradation while the message is assembled and transmitted. 

If there is a major failure somewhere on the network, such as a power grid going down 
and uninterruptible power supplies kicking in, each SNMP-managed device might try to 
send interrupt-driven messages to the server at the same time to report the problem. This 
can swamp the network and result in incorrect information at the server. 

A combination of polling and interruption is often used to get by all these problems. 
The combination is called trap-directed polling, and it involves the server polling for 
statistics at intervals or when directed by the system administrator. In addition, each 
SNMP-managed device can generate an interrupt message when certain conditions occur, 
but these tend to be more rigorously defined than in a pure interrupt-driven system. For 
example, if you use interrupt-only SNMP, a router might report load increases every 10 
percent. If you use trap-directed polling, you know the load from the regular polling 



and can instruct the router to send an interrupt only when a significant increase in 
load is experienced. After receiving an interrupt message with trap-directed polling, the 
server can further query the device for more details, if necessary. 

An SNMP server software package can communicate with the SNMP agents and transfer 
or request several types of information. Usually, the server requests statistics from the 
agent, including number of packets handled, status of the device, special conditions 
associated with the device type (such as out-of-paper indications or loss of connection 
from a modem), and processor load. 

The server can also send instructions to the agent to modify entries in its database (the 
Management Information Base). The server can also send threshold or conditions under 
which the SNMP agent should generate an interrupt message to the server, such as 
when CPU load reaches 90 percent. 

Communications between the server and agent occur in a fairly straightforward 
manner, although they tend to use abstract notation for message contents. For 
example, the server might send a What is your current load message and receive back a 
75% message. The agent never sends data to the server unless an interrupt is generated 
or a poll request is made. This means that some long-standing problems can exist without 
the SNMP server knowing about them, simply because a poll wasn't conducted or an 
interrupt generated. 

Management Information Base (MIB)

Every SNMP-managed device maintains a database that contains statistics and other 
data. These databases are called a Management Information Base, or MIB. The MIB 
entries have four pieces of information in them: an object type, a syntax, an access field, 
and a status field. MIB entries are usually standardized by the protocols and follow 
strict formatting rules defined by Abstract Syntax Notation One (ASN.1). 

The object type is the name of the particular entry, usually as a simple name. The syntax 
is the value type, such as a string or integer. Not all entries in an MIB have a value. 
The access field is used to define the level of access to the entry, normally defined by 
the values read-only, read-write, write-only, and not accessible. The status field 
contains an indication of whether the entry in the MIB is mandatory (which means the 
managed device must implement the entry), optional (the managed device can implement 
the entry), or obsolete (not used). 

There are two types of MIB in use, called MIB-1 and MIB-2. The structures are different. 
MIB-1 was used starting in 1988 and has 114 entries in the table, divided into groups. For 
a managed device to claim to be MIB-1 compatible, it must handle all the groups that 



are applicable to it. For example, a managed printer doesn't have to implement all the 
entries that deal with the Exterior Gateway Protocol (EGP), which is usually 
implemented only by routers and similar devices. 

MIB-2 is a 1990 enhancement of MIB-1, made up of 171 entries in ten groups. The additions 
expand on some of the basic group entries in MIB-1 and add three new groups. As with 
MIB-1, an SNMP device that claims to be MIB-2 compliant must implement all those 
groups that are applicable to that type of device. You will find many devices that are 
MIB-1 compliant but not MIB-2. 

In addition to MIB-1 and MIB-2, several experimental MIBs in use add different groups 
and entries to the database. None of these have been widely adopted, although some 
show promise. Some MIBs have also been developed by individual corporations for their 
own use, and some vendors offer compatibility with these MIBs. For example, Hewlett-
Packard developed an MIB for their own use that some SNMP-managed devices and 
software server packages support. 

Simple Network Management Protocol

The Simple Network Management Protocol (SNMP) has been through several iterations. 
The most commonly used version is called SNMP v1. Usually SNMP is used as an 
asynchronous client/server application, meaning that either the managed device or the 
SNMP server software can generate a message to the other and wait for a reply, if one is 
expected. These are packaged and handled by the network software (such as IP) as any 
other packet would be. SNMP uses UDP as a message transport protocol. UDP port 161 is 
used for all messages except traps, which arrive on UDP port 162. Agents receive their 
messages from the manager through the agent's UDP port 161. 

●     The first major release of SNMP, SNMP v1, was designed for relatively simple 
operations, relatively easy implementation by device manufacturers, and good 
portability to operating systems. 

When a request is sent, some of the fields in the SNMP entry are left blank. These are 
filled in by the client and returned. This is an efficient method of transferring the 
question and answer in one block, eliminating complex look-up algorithms to find out 
what query a received answer applies to. 

The get command, for example, is sent with the Type and Value fields in the message set 
to NULL. The client sends back a similar message with these two fields filled in (unless 
they don't apply, in which case a different error message is returned). 



SNMP v2 adds some new capabilities to the older SNMP version, the most handy of which 
for servers is the get-bulk operation. This lets a large number of MIB entries be sent in 
one message, instead of requiring multiple get-next queries with SNMP v1. In addition, 
SNMP v2 has much better security than SNMP v1, preventing unwanted intruders from 
monitoring the state or condition of managed devices. Both encryption and 
authentication are supported by SNMP v2. SNMP v2 is a more complex protocol and is not 
as widely used as SNMP v1. 

Despite its widespread use, SNMP has a few disadvantages. The most important is its 
reliance on UDP. Because UDP is connectionless, there is no reliability inherent in 
messaging between server and agent. Another problem is that SNMP provides only a 
simple messaging protocol, so filtering messages cannot be performed. This increases the 
load on the receiving software. Finally, SNMP almost always uses polling to some 
degree, which consumes a considerable amount of bandwidth. 

Setting Up SNMP Under UNIX

Although many operating systems support SNMP and enable you to configure its use, 
SNMP remains a very UNIX-oriented protocol. Chances are, if there's a UNIX box on your 
network, SNMP is based on the UNIX machine. Other operating systems such as Windows 
NT support SNMP client and server software—and they are usually very easy to set up 
and manage— but for this section I bow to the majority and look only at UNIX. 

Most UNIX versions include both the client and server software as part of the 
operating system. The client software is executed through the snmpd daemon, which 
usually runs all the time when SNMP is used on the network. Normally, the snmpd 
daemon is started automatically when the system boots; it is controlled through the rc 
startup files. When SNMP starts, the daemon reads several configuration files. On most 
SNMP agents, the files that snmpd reads are as follows: 

/etc/inet/snmpd.conf 

/etc/inet/snmpd.comm 

/etc/inet/snmpd.trap 

The directories these files are under might be different for each UNIX version, so you 
should check the filesystem for their proper location. 

The snmpd.conf file contains four system MIB objects. Most of the time these objects are 
set during installation, but you might want to verify their contents. A sample 
snmpd.conf file is shown here: 



#      @(#)snmpd.conf    6.3 8/21/93 - STREAMware TCP/IP  
source

#

# Copyrighted as an unpublished work.

#  Copyright 1987-1993 Lachman Technology, Inc.

# All rights reserved.

descr=SCO TCP/IP Runtime Release 2.0.0

objid=SCO.1.2.0.0

contact=Tim Parker  tparker@tpci.com

location=TPCI Int'l HQ, Ottawa

In many snmpd.conf files you have to fill out the contact and location fields yourself 
(which define the contact user and physical location of the system), but the descr and 
objid fields should be left as they are. The variables defined in the snmpd.conf file 
correspond to MIB variables as shown in Table 13.1. 

Table 13.1. snmpd.comf and MIB variables.

snmpd.comf Variables MIB Variables 

descr sysDescr 

objid sysObjectID 

contact sysContact 

location sysLocation 

The snmpd.comm (community) file is used to provide authentication information and a list 
of hosts that have access to the local database. Access by a remote machine to the local 
SNMP data is provided by including the remote machine's name in the snmpd.comm file. A 
sample snmpd.comm file looks like this: 

#      @(#)snmpd.comm    6.5 9/9/93 - STREAMware TCP/IP  
source



accnting    0.0.0.0        READ

r_n_d       147.120.0.1    WRITE

public      0.0.0.0        READ

interop     0.0.0.0        READ

Each line in the snmpd.comm file has three fields: the community name, the IP address of 
the remote machine, and the privileges the community has. If the IP address is set to 
0.0.0.0, any machine can communicate with that community name. The privileges can be 
READ for read-only, WRITE for read and write, and NONE to prevent access by that 
community. Read and write access are references to capabilities to change MIB data, not 
filesystems. 

The snmpd.trap file specifies the name of hosts to whom a trap message must be sent when 
a critical event is noticed. A sample snmpd.trap file looks like this: 

#      @(#)snmpd.trap    6.4 9/9/93 - STREAMware TCP/IP  
source

superduck  147.120.0.23    162

Each line in the snmpd.trap file has three fields: the name of the community, its IP 
address, and the UDP port to use to send traps. 

SNMP Commands

UNIX offers several SNMP-based commands for network administrators to obtain 
information from an MIB or an SNMP-compliant device. The exact commands vary a 
little depending on the implementation, but most SNMP systems support the commands 
shown in Table 13.2. 

Table 13.2. SNMP commands.

Command Description 

getone Uses the SNMP get command to retrieve a variable value 

getnext Uses the SNMP getnext command to retrieve the next variable value 

getid Retrieves the values for sysDescr, sysObjectID, and sysUpTime 



getmany Retrieves an entire group of MIB variables 

snmpstat Retrieves the contents of SNMP data structures 

getroute Retrieves routing information 

setany Uses the SNMP set command to set a variable value 

Most of the SNMP commands require an argument that specifies the information to be 
set or retrieved. The output from some of the commands given in Table 13.2 is shown in 
the following extract from an SNMP machine on a small local area network: 

$ getone merlin udpInDatagrams.0

Name: udpInDatagrams.0

Value: 6

$ getid merlin public

Name: sysDescr.0

Value: UNIX System V Release 4.3

Name: sysObjectID.0

Value: Lachman.1.4.1

Name: sysUpTime.0

Value: 62521

None of the SNMP commands can be called user-friendly, because their responses are 
terse and sometimes difficult to analyze. For this reason, many GUI-based network 
analyzers are becoming popular, offering menu-based access to many SNMP functions 
and better presentation of data. The use of a GUI-based SNMP tool can present full-
color graphical displays of network statistics in a real-time manner. However, these GUI 
tools tend to cost a considerable amount. 

Network Topologies

I briefly examined both LAN and WAN topologies on Day 1, looking at bus and ring 



networks and the connections between LANs to make a WAN, so that material should be 
somewhat familiar to you. You can now extend your attention from the LAN topology 
to the larger internetworked topology by using TCP/IP. To do that, I must tie the role 
of routers, bridges, and similar devices into the network topology and show their role in 
a TCP/IP system. 

One useful concept to keep in mind is the 80/20 rule, which states that 80 percent of most 
network traffic is for local machines, and 20 percent needs to move off the LAN. In 
reality, the ratio of local traffic is usually much higher, but planning for an 80/20 split 
helps establish workable limits for connections to network backbones. 

LANs are tied to a larger network backbone (either a WAN or an internetwork such as 
the Internet) through a device that handles the passage of datagrams between the LAN 
and the backbone. In a simple setup, a router performs this function. This is shown in 
Figure 13.1. Routers connect networks that use different link layer protocols or Media 
Access Control (MAC) protocols. Routers examine only the headers of datagrams that 
are specifically sent to them or are broadcast messages, but there is a lot of processing 
involved within the router. 

Figure 13.1. A router connects a LAN to the backbone. 

If two or more LANs are involved in one organization and there is the possibility of a 
lot of traffic between them, it is better to connect the two LANs directly with a bridge 
instead of loading the backbone with the cross-traffic. This is shown in Figure 13.2. 
Bridges can also connect two WANs using a high-speed line, as shown in Figure 13.3. 

Figure 13.2. Using a bridge to connect two LANs. 

Figure 13.3. Using a bridge to connect two WANs. 

You might recall that bridges are used when the same network protocol is on both 
LANs, although the bridge does not care which physical media is used. Bridges can 
connect twisted-pair LANs to coaxial LANs, for example, or act as an interface to a 
fiber optic network. As long as the Media Access Control (MAC) protocol is the same, 
the bridge functions properly. 

Many high-end bridges available today configure themselves automatically to the 
networks they connect and learn the physical addresses of equipment on each LAN by 
monitoring traffic. One problem with bridges is that they examine each datagram that 
passes through them, checking the source and destination addresses. This adds overhead 
and slows the routing through the bridge. (As mentioned earlier, routers don't examine 
each datagram.) 

In a configuration using bridges between LANs or WANs, traffic from one LAN to 
another can be sent through the bridge instead of onto the backbone, providing better 
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performance. For services such as Telnet and FTP, the speed difference between using a 
bridge and going through a router onto a heavily used backbone can be appreciable. If 
the backbone is not under the direct administration of the LAN's administrators (as with 
the Internet), having a bridge also provides a method for the corporation or 
organization to control the connection. 

The use of a bridge has one other advantage: if the backbone fails, communications 
between the two LANs are not lost. The same applies, of course, if the bridge fails, 
because the backbone can be used as a rerouting path. For critical networks, backbones 
are usually duplicated for redundancy. In the same manner, most organizations have 
duplicate routers and bridges in case of failure. 

Bridges can be used when splitting a large LAN into smaller networks. This is often 
necessary when a LAN continues to expand as new equipment is added. Eventually the 
network traffic becomes bottlenecked. A useful and relatively easy solution is to 
divide the larger LAN into smaller LANs connected over a backbone. This helps conform 
to the 80/20 rule, while simplifying the traffic and administration overhead. This is 
shown in Figure 13.4. If the backbone is carefully chosen with lots of excess capacity, 
this type of topology can account for sizable future growth. 

Figure 13.4. Dividing a large LAN into several smaller LANs. 

Routers, too, can be used to control large networks. This is an advantage when 
broadcasts are frequently used, because the router can filter out broadcasts that apply 
only to a specific LAN. (Most bridges propagate broadcasts across the network.) The use 
of a single switching router or hub router is becoming popular for joining different LANs 
within an organization, as shown as in Figure 13.5. 

Figure 13.5. Using a hub router to connect LANs. 

When large networks are necessary, several routers can be used to split the load. 
Intelligent network routers can optimize the routing of datagrams, as well as monitor 
and control network traffic and bottlenecks at any location. 

On many occasions the advantages of a bridge and a router together are ideal. These 
combined devices, called brouters, are now making an appearance. Brouters can perform 
routing with some messages and bridging with others by examining incoming datagrams 
and using a filter mask to decide which function is performed. Brouters have the 
capability to handle multiple protocols, much like routers. 

Configuring a Network
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Equipment available today is much more capable than was available when TCP/IP began 
its development cycle. In some ways, this has simplified the task of adding to or 
configuring a network, but it has also posed some problems of its own. Most equipment 
can be added to a network by simply attaching the network medium (such as a coaxial or 
twisted-pair cable) and configuring the interface with the IP address and domain name. 

Of course, the more complicated the network, the more work must be done. Configuring 
a bridge, for example, can be as simple as connecting it to the networks it serves. Most 
bridges can autoconfigure themselves and watch the network traffic to build a table of 
network address. However, adding filters to restrict traffic or limiting access through 
blocking ports requires more detailed configuration processes. 

Configuring a network and TCP/IP is not difficult, but it can be time-consuming. 
Different operating systems approach the task in a variety of ways. UNIX, for example, 
uses a large number of small configuration files scattered throughout the file system. 
IBM mainframes use a single large file. Configurations on some systems use a menu-
driven interface that guides the user through all the necessary steps, ensuring that no 
errors are made. 

For most networks and their interface cards, the following information is required: 

●     Physical address: Usually provided by the interface manufacturer. 

●     IP address: Optional with serial-line interfaces. 

●     Subnet mask: Specifies the network address. 

●     Protocol: IP, if TCP/IP or UDP is used. 

●     Routing protocols: Whether ARP or RARP is used. 

●     Broadcast address: Format to use for broadcasts, usually all 1s. 

Secondary IP addresses can be used for devices such as routers, which can handle two 
logical networks. As noted, serial interfaces do not need an IP address, although they 
can be supplied. Serial interfaces also require a setting to indicate whether the device is 
configured to act as Data Terminal Equipment (DTE) or Data Communications Equipment 
(DCE), the serial port's baud rate and parity, and settings for the maximum size of a 
transmission. 

Whatever equipment is used on a network, they all have a physical connection to the 
network transport medium. Typically this is a network card in a workstation, desktop 
PC, or printer. Software supplied with the device controls the interface, eliminating 
most of the worries of matching hardware, software, and protocols. After deciding on 
an IP address, the setting can be programmed either by switches or software, and the 



device is ready to talk to the network. 

IP addresses can be chosen at random by the system administrator, but this can cause 
problems when the datagrams are released to a larger internetwork such as the 
Internet. Ideally, a network mask is assigned by the Network Information Center (NIC). 
This is then combined with the administrator's own numbering scheme in the LAN to 
produce the full IP address. 

The IP addresses are assigned by the NIC based on the class of network, which reflects 
the size of the organization and the number of local equipment addresses required. As 
shown in Figure 13.6, there are four NIC-approved IP address structures. Class A 
addresses are for very large networks that need 24 bits available for local addresses, 
reducing the network address to 7 bits. Class B assigns 16 bits locally and 14 bits for the 
network address, whereas Class C enables only 8 bits for local addresses and 21 bits for 
the network address. Class C networks are for small companies only, because only 256 
local addresses can be created. Class D addresses are used for special systems not 
usually encountered by users. 

Figure 13.6. The four IP address class structures. 

Numbering schemes within a network are left to the administrator's whim, although a 
convention of assigning low numbers to routers and bridges is usually followed. It is 
also useful to use Address Resolution Protocol (ARP) on local servers or routers to 
provide for faster startup when machines query for their IP addresses. This prevents 
system-wide broadcasts. The manner in which user equipment starts up (whether it uses 
BOOTP, ARP, or RARP) can affect the configuration of the local servers and routers. 

Physical addresses of network connectors seldom have to be changed from their default 
settings. Most vendors guarantee a unique physical setting for their hardware, so these 
can usually be maintained with no change. For the conversion of IP address to physical 
address, this information must be stored in a routing table. 

Routing tables for small networks are often created and maintained by hand. Larger 
networks might involve too many changes for the manual approach to be effective, so a 
routing protocol such as Routing Information Protocol (RIP) is used. Several routing 
protocols are available, including RIP and Open Shortest Path First (OSPF). The choice 
of the routing protocol can be important and usually depends on the size of the 
network and the connections between subnetworks and external systems. Routing 
protocols should be started automatically when the network is booted. 

Configuring the network includes setting the domain name and network IP mask, 
following the formats approved by the NIC. Many operating systems have utilities that 
help configure the domain name and network IP mask. The Domain Administrator's Guide, 
which describes the process of forming a domain name, is available from the NIC (RFC 
1032). These steps apply only if the network is to connect to the Internet or a similar 
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internetwork. If the network is autonomous with no outside connections, the 
administrator can choose any network IP mask and domain name (although future 
connections might force a complete reconfiguration of the network if an NIC-consistent 
scheme is not used). 

Connections to the Internet require an Autonomous System (AS) number from the NIC, 
which provides other systems with your BORDER router address. Gateway protocols 
such as the Exterior Gateway Protocol (EGP) or newer BORDER Gateway Protocol 
(BGP) must be installed and configured to provide Internet routing. 

Also involved in naming are the name-to-address resolution tables, which convert a 
symbolic name to an IP address. These are usually configured manually, although some 
automated formatting tools are offered with different operating systems. If the Domain 
Name System (DNS) is to be implemented, that adds another level of complexity to the 
name configuration, the details of which are best left to more specialized texts. 

Some routers can be configured to filter message traffic. In these cases, the masks used 
to restrict or enable datagrams must be added to the router tables, as well as any 
limitations or exceptions to requests for socket services (such as Telnet). Setting ARP 
tables in routers can help bring up newly started machines more quickly than if a 
broadcast is sent network-wide to the primary ARP server. Several routers can be 
configured for priority routing, enabling priority based on the protocol, type of service, 
or a selected criteria such as IP address or socket. 

Router software can be accessed either locally through a dedicated terminal or over 
the network. The latter enables a system administrator to log in using Telnet from a 
machine on the network and then run configuration or maintenance utilities. It is 
advisable to make access to these utilities extremely limited. 

After the network addresses have been established, TCP can be configured. This is 
normally performed on a per-machine basis using an interface utility. In the TCP 
software configuration are settings for default window sizes and maximum segment size. 
If changes over the standard TCP port assignments are required, the configuration files 
must be edited. Processes that start TCP and monitor ports for connections (such as 
inetd, described on Day 6, "Telnet and FTP,") must be added to the system startup files. 
Other services such as electronic mail (which might use a dedicated protocol such as 
SNMP) must be installed and properly configured. 

Monitoring and Basic Troubleshooting Utilities

On Days 6 and 7 I looked at TCP/IP network utilities such as ping, finger, ruptime, and 
netstat, which help determine the status of connections and interfaces. I mention them 



here again briefly and also introduce some new commands. Several software vendors 
now offer talented network monitoring products that provide excellent information 
about the network, its connections, and the traffic it carries. Many of these products 
also enable dynamic configuration of the system. 

The ping (Packet Internet Groper) command is the easiest method to check a machine's 
connection to the network. It uses the Internet Control Message Protocol (ICMP) to 
send a request for response. The ping command is useful with routers, because it can 
check each interface. Different versions of ping are available, some with different 
options. 

The following output shows a character-based system using ping to check on another 
machine on the network. The command line uses the -c option to limit the number of 
packets sent. As you can see, an IP address was used to indicate the destination machine, 
and the machine translated this to the symbolic name pepper based on the host table. 

# ping -c5 205.150.89.2

PING 205.150.89.2 (205.150.89.2): 56 data bytes

64 bytes from pepper (205.150.89.2): icmp_seq=0 ttl=32 
time=40 ms

64 bytes from pepper (205.150.89.2): icmp_seq=1 ttl=32 
time=0 ms

64 bytes from pepper (205.150.89.2): icmp_seq=2 ttl=32 
time=0 ms

64 bytes from pepper (205.150.89.2): icmp_seq=3 ttl=32 
time=0 ms

64 bytes from pepper (205.150.89.2): icmp_seq=4 ttl=32 
time=0 ms

--- 205.150.89.2 ping statistics ---

5 packets transmitted, 5 packets received, 0% packet loss

round-trip min/avg/max = 0/8/40 ms

A GUI-based ping utility is shown in Figure 13.7. This shows the ChameleonNFS ping 
utility sending a single packet to a remote device (in this case a network printer with 
the IP address 205.150.89.200) and getting a positive response. 

Figure 13.7. ping can also be used on GUI systems, although usually with fewer 
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options than on UNIX. 

A similar utility is spray, which uses a Remote Procedure Call (RPC, discussed on Day 9, 
"Setting Up a Sample TCP/IP Network: Servers") to send a constant stream of datagrams 
or ICMP messages. The difference between ping and spray is that spray sends the 
datagrams constantly, whereas ping has an interval between datagrams. This can be 
useful for checking burst-mode capabilities of the network. The output of a spray 
command on a BSD UNIX system looks like this: 

$ spray -c 5 tpci_sun2

sending 5 packets of lnth 86 to tpci_sun2 ...

   in 0.3 seconds elapsed time,

   1 packets (20.00%) dropped by tpci_sun2

Sent: 19 packets/sec, 1.8K bytes/sec

Rcvd: 16 packets/sec, 1.6K bytes/sec

Day 7, "TCP/IP Configuration and Administration Basics," covered the netstat command 
in some detail. It is useful for checking the status of the network. The implementations 
of netstat vary widely depending on the operating system version. 

Some systems have a utility called traceroute (available as public domain software), 
which sends a series of UDP datagrams to the target. The datagrams are constructed 
slightly differently depending on their location in the stream. The first three 
datagrams have the Time to Live (TTL) field set to 1, meaning the first time a router 
encounters the message it is returned with an expired message. The next three messages 
have the TTL field set to 2, and so on until the destination is reached. 

The traceroute output shows the round-trip time of each message (which is useful for 
identifying bottlenecks in the network) and the efficiency of the routing algorithms 
(through a number of routers that might not be the best route). A sample output from a 
traceroute command (all machine names and IP address are invented) follows: 

$ traceroute black.cat.com

1  TPCI.COM (127.01.13.12)           51ms   3ms   4ms

2  BEAST.COM (143.23.1.23)           60ms   5ms   7ms

3  bills_machine.com (121.22.56.1)   121ms  12ms  12ms
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4  SuperGateway.com (130.12.14.2)    75ms   13ms  10ms

5  black.cat.com  (122.13.2.12)      45ms   4ms   6ms

When dealing with RPC, a utility called rpcinfo can determine which RPC services are 
currently active on the local or any remote system that supports RPC. The options 
supported by rpcinfo vary with the implementation, but all enable flags to decide which 
type of service to check. For example, the -p option displays the local portmapper. The 
following example shows the options supported on the SCO UNIX version of rpcinfo, as 
well as the output for the portmapper: 

$ rpcinfo

Usage: rpcinfo [ -n portnum ] -u host prognum [ versnum ]

       rpcinfo [ -n portnum ] -t host prognum [ versnum ]

       rpcinfo -p [ host ]

       rpcinfo -b prognum versnum

$ rpcinfo -p

   program vers proto   port

    100000    2   tcp    111  portmapper

    100000    2   udp    111  portmapper

    150001    1   udp   1026  pcnfsd

    150001    2   udp   1026  pcnfsd

    100008    1   udp   1027  walld

    100002    1   udp   1028  rusersd

    100002    2   udp   1028  rusersd

    100024    1   udp   1029  status

    100024    1   tcp   1024  status

    100020    1   udp   1034  llockmgr

    100020    1   tcp   1025  llockmgr

    100021    2   tcp   1026  nlockmgr



    100021    1   tcp   1027  nlockmgr

    100021    1   udp   1038  nlockmgr

    100021    3   tcp   1028  nlockmgr

    100021    3   udp   1039  nlockmgr

Monitoring NFS (an RPC service) can be more complicated. A few utility programs are 
available. The nfsstat command displays information about recent calls: 

$ nfsstat

Server rpc:

calls      badcalls   nullrecv   badlen     xdrcall

458        0          1          2          0

Server nfs:

calls      badcalls

412         2

null       getattr    setattr    root       lookup     
readlink   read

0 0%       200 49%    0 0%       0 0%       120 29%    75 
18%     126 31%

wrcache    write      create     remove     rename     link       
symlink

0 0%       0 0%       0 0%       0 0%       0 0%       0 0%       
0 0%

mkdir      rmdir      readdir    fsstat

0 0%       0 0%       52 13%     12 3%

Client rpc:

calls      badcalls   retrans    badxid     timeout    wait       
newcred

1206       1          0          0          3          0          



0

peekeers   badresps

0          1

Client nfs:

calls      badcalls   nclget     nclsleep

1231       0          1231       0

null       getattr    setattr    root       lookup     
readlink   read

0 0%       0 0%       0 0%       0 0%       562 46%    134 
11%    137 11%

wrcache    write      create     remove     rename     link       
symlink

0 0%       0 0%       0 0%       0 0%       0 0%       0 0%       
0 0%

mkdir      rmdir      readdir    fsstat

0 0%       0 0%       239 19%    98 8%

The mount program shows which directories are currently mounted, and the command 
showmount shows the current NFS servers on the system: 

$ mount

pepper:/               /server               nfs ro,bg,intr

pepper:/apps           /server/apps          nfs ro,bg,intr

pepper:/usr            /server/usr           nfs rw,bg,intr

pepper:/u1             /server/u1            nfs rw,bg,intr

$ showmount

m_server.tpci.com

merlin.tpci.com

sco_gate.tpci.com



tpti.tpci.com

The mount output shows the directories on the machine named pepper that were mounted 
onto the local /server directory when the system booted. The permissions for each 
mounted directory are shown at the end of each line, where ro means read-only and rw 
means read-write. The bg in the status lines means background, indicating that if the 
mount fails, the system tries again periodically. The intr option means that keyboard 
interrupts can be used to halt the reconnection attempts. 

Also available as public domain software are nfswatch and nhfsstone. The nfswatch 
utility monitors all NFS traffic on a server and updates status information at 
predetermined intervals. This can be useful for watching the load change during the 
day. The nhfsstone utility is for benchmarking, generating an artificial load and 
measuring the results. 

A fast method to verify a port's proper functioning is to connect to it with Telnet or 
FTP. Both programs enable the user to specify the port to use instead of the default. In 
the following example, port 25 (usually used for mail) is tested: 

$ telnet tpci_hpws4 25

Trying 127.12.12.126 ...

Connected to tpci_hpws4.

Escape shcracter is '^]'.

220 tpci_hpws4 Sendmail 3.1 ready at Sat, 2 July 94 12:16:54 
EST

HELO TPCI_SERVER_1

250 tpci_hpws4 This is garbage typed to force a closed 
connections as it doesn't understand this stuff

QUIT

221 tpci_hpws4 closing connection

Connection closed by foreign host.

In this example, port 25 received the connection request properly and waited for the 
mail protocol messages. Because it didn't get any, it closed the connection. This short 
session establishes that port 25 is functioning properly as far as connections are 
concerned. It doesn't convey any information about the integrity of the mail transfer 



protocol, though. 

All of these utilities can be combined to provide a troubleshooting checklist for basic 
problems. These tell you at least where the problem is, if not more. A diagnostic 
procedure is assembled from the utilities, such as the following: 

●     If DNS is on the system, use a DNS utility such as nslookup to ensure that DNS is 
active. 

●     If NFS is used, check it with the mount utility. 

●     Use ping to check whether a remote machine is alive. 

●     Use traceroute to ensure that a routing problem is not occurring. Check all ports 
of the routers if traceroute fails (use the Telnet login process shown previously). 

●     Use netstat to examine ICMP messages recently generated. 

●     Try logging into the remote directly with FTP or Telnet. 

●     If RPCs appear to be the problem, use rpcinfo. 

Of course, if better tools are available from commercial sources, use them to their full 
advantage. It is important to know that you don't have to spend thousands of dollars on 
a network monitoring tool, because the utilities supplied with the operating system are 
often quite capable (if not as fancy or graphically oriented). 

Troubleshooting the Network Interface

The physical connection to the network is a suitable starting point for troubleshooting 
when a problem is not obvious. Because there are many popular network interfaces, each 
of which must be dealt with in a slightly different manner, some generalizations must 
be made. The overall approach remains the same, however. 

Assuming that the network itself is functional, the most common problems with the 
network interface are a faulty network card or a bad connector. Checking each is 
easily done by simple replacement. If the problem persists, the fault is most likely higher 
in the architecture. 

Faulty network transport media (usually cables) are not uncommon. If a device at the 
end of a cable is not functioning, it is worthwhile to check the cable itself to ensure 
that a communication path exists. This can be done with a portable computer or 



terminal, or in some cases a conductivity tester, depending on the network. A systematic 
testing process can narrow down a network cabling problem to a specific segment. 

One overlooked problem arises not because of a real fault with the network interface 
or the network itself, but because one device on the network is transmitting a different 
protocol. This can foul up the entire network and grind it to a halt. (For example, an 
Ethernet network might have one or more devices set to transmit IEEE 802.3 frames, 
which are not the same as Ethernet.) 

If there is a conversion from one protocol to another, that can be suspect. For example, 
it is common to find AppleTalk networks running TCP/IP. The IP messages are 
encapsulated in AppleTalk frames. If the conversion between the two formats (which 
can occur at a gateway or router) is not clean, some faulty packets might be passed. This 
can cause network problems. 

If the network connections and network interface cards appear to be working (which 
can be verified with a network analyzer or board swapping), the problem is in a higher 
layer. 

Troubleshooting the Network (IP) Layer

The network layer (where IP resides) can be the most trouble-prone aspect of the 
network if configuration rules are not followed scrupulously. Because this layer 
handles routing, any mistakes can cause lost packets, making it appear that a machine on 
the network is not communicating with the others. ICMP can be a useful tool for 
troubleshooting this layer. 

One of the most common mistakes, especially with large networks, is a duplication of IP 
addresses. This can be an accident, as a new address is programmed, or a user can move his 
or her machine and in the process jumble the IP address. It is not uncommon for users to 
change the IP address by mistake when investigating the software. The network mask 
must also be correct. 

Addressing of packets within the IP layer (where the source and destination IP addresses 
are encapsulated in the IP header) is another source of problems. Determining 
destination IP addresses requires communications with another machine, which should 
hold the necessary information. If the Domain Name System (DNS) is active, it can 
contribute to the confusion if the server has faulty tables. 

It is necessary for the IP address to be mapped to the physical address. Both ARP and 
RARP require this table to direct packets over the network. If a network card is 
changed for any reason, the unique physical address on the board no longer corresponds 



to the IP address, so messages are rerouted elsewhere. Network administrators must keep 
close track of any changes to the network hardware in all devices. 

Problems can also occur with devices that handle intermediary routing, such as bridges, 
routers, and brouters. These must be aware of all changes to the network, as well as 
physical and logical addresses for the devices they are connected to. Specialized 
protocols such as Routing Information Protocol (RIP) and Open Shortest Path First 
(OSPF) handle much of this maintenance, but somewhere in the network a manual 
notation of changes must be made. 

There are many potential sources of trouble with the network layer. Even processes 
that should work without trouble, such as packet fragmentation and reassembly, can 
cause problems. 

Connectivity between machines at both the transport and network level can be tested 
using utilities such as ping. A systematic check of machines along a network and out 
over an internetwork can help isolate problems, not just in the source and destination 
machines but also in intermediate processors such as routers. The traceroute utility can 
be used for this, also, if it is available. 

Troubleshooting TCP and UDP

Assuming the network layer is functioning correctly, the host-to-host software might 
be a problem. If the software is correctly installed and started (which might sound 
obvious but is a common cause of failure), a process to isolate the problem must be 
followed. There are many files involved with both TCP and UDP, differing with each 
operating system version, so the documentation accompanying the TCP or UDP software 
should be consulted. 

The protocol in use must be determined first: Is the machine using TCP or UDP, and if 
both, are both failing? Problems such as too many retransmissions or no timeout values 
can make UDP appear as if it is failing, but TCP would not be affected (unless it uses the 
same port or too many processes are active). 

Port addresses can be problematic, especially with TCP. Each port on a machine can be 
sent a ping message from a remote machine to verify that it is communicating properly. If 
a port request fails, it might indicate an improper or missing entry in a configuration 
file. The finger utility might also be useful. If messages are passing correctly from one 
machine to another, the problem is in the configuration of the software, or a higher 
level application. 

Incorrect configuration parameters can cause TCP or UDP failures. For example, if the 



send and receive window values for TCP are set to low levels, there might be no 
opportunity for applications to pass enough information. In this case, it might appear 
that TCP is at fault. Carefully check all configuration files and settings. 

Troubleshooting the Application Layer

Assuming that both IP and TCP or UDP are functioning properly, the application layer is 
suspect. It is in this layer that higher-level protocols such as the File Transfer 
Protocol (FTP), Telnet, and SMTP are based. It can be difficult to find problems within 
the application layer, although a few simple tests help eliminate obvious solutions. 
Several commercial utilities are available to monitor reception within the application 
layer. 

Assuming that data is getting to the right application (which can be checked with some 
diagnostic tools or simple programming routines), the problem might be in interpretation. 
Verify that the communications between two applications are both the same format. 
More than one application has expected ASCII and received EBCDIC. Diagnostics show 
the messages moving into the application properly, but they are total gibberish to the 
application when it tries to interpret them. 

Assuming that is not the problem, there could be a fault with the applications at either 
end. Although you might assume that a Telnet program from one vendor would talk to 
one from another vendor, this is not true in an unfortunately large number of cases. If 
there are no identical software packages or versions known to work with the other 
package, this can be difficult to troubleshoot. This kind of cross-application problem is 
particularly prevalent with mixed-platform systems, such as a PC-based FTP or TCP/IP 
software package trying to access services on a UNIX host. 

Some readily available utilities can be used to monitor the application layer. Some of 
these utilities are distributed with operating systems, and others are distributed as 
public domain software. The utility snmpwatch is a network monitoring program that 
reports on any SNMP variables that change their values. This can be helpful in 
diagnosing communications problems within SNMP. 

The Internet Rover is a network monitoring program that enables testing of several 
protocols, including Telnet, FTP, and SMTP. Unfortunately, it doesn't work with all 
operating system variants. Another tool for SMTP testing is mconnect, which verifies 
connections. 

Security



This is not the place for a long discourse on computer security. Instead, I touch on the 
impact security has on TCP/IP-based networks only in the slightest terms. Security is an 
important issue and one often overlooked, usually to the administrator's rue. Taking 
the steps to set up a proper security policy and protecting the system as well as possible 
should be a mandatory task for every system administrator. 

Routers can be significant in a network's security plan. Most routers enable the system 
administrator to restrict traffic through the router in some manner, either in one 
direction or both. A router can be set, for example, to prohibit Telnet or rlogin requests 
from outside the network, but enable through file transfer requests such as FTP. 
Routers can also prevent traffic into a local network through the router from 
anywhere outside the network, cutting down on access into (and through) a network. 

Routers usually perform this type of traffic filtering by simply looking at the datagram 
headers for the requested port. If one of the restricted ports is requested, the datagram 
can be returned to the sender or discarded. Setting the proper access filters from a 
network router can be an effective and simple manner of restricting outside access. 

Unfortunately, the Internet and most networks were simply not designed to prevent 
unauthorized access or monitoring. These features were usually added as an 
afterthought, and as such have some problems. Watching network traffic and trapping 
addresses, user IDs, and passwords is ridiculously easy, so MIT developed Kerberos 
security protocols to help. 

Kerberos (named after the three-headed dog guarding the gates of Hades) uses an 
encryption key and server introduction method to enable access. Kerberos is slowly 
being adopted as a standard among Internet users (despite some governmental protests), 
and it works well with the TCP/IP family of protocols. For more information on 
Kerberos, connect to ATHENA.MIT.EDU over the Internet or send e-mail to that site 
requesting information. 

Summary

I took a brief look at the network management and troubleshooting tools available 
with TCP/IP. As mentioned in the introduction, both subjects are complex, potentially 
demanding, and still considered by many to be an art. There are many excellent books 
on network management, so you are encouraged to scour your library or bookstore for 
ones that interest you if you want to know more about this subject. 



The tools provided within the TCP/IP family give you enough diagnostic resources to 
isolate the source of practically any software or hardware problem. Sometimes the 
solution to a problem is simple and can be easily managed through a configuration 
change. Often, though, a problem is outside the bounds of TCP/IP's protocol, requiring 
more powerful diagnostic procedures. It is useful to follow the steps outlined in this 
chapter first, and resort to other systems only when the TCP/IP diagnostics have been 
unable to help. 

System administration and network troubleshooting are both curious tasks. They 
require a lot of work at times, but there is an undeniable sense of accomplishment when 
a network runs smoothly or you have tracked down and fixed a problem. Although only 
a few users in every group are called upon to perform either task, those that do are in 
for quite an adventure! 

Q&A

According to the OSI Reference Model, what is the role of fault management? 

Fault management is the detection, isolation, and correction of faults. It also includes 
the maintenance and checking of error and diagnostic logs. Fault management is one of 
five Specific Management Functional Areas defined by the ISO as part of the OSI-RM. 

What are CMIP and CMIS? How do they relate to SNMP? 

CMIP is the Common Management Information Protocol. CMIS is the Common 
Management Information Service. Both are part of the OSI network management 
proposal for use as a replacement for SNMP. 

With SNMP, what is proxy management? 

Proxy management is when a device that cannot hold the full SNMP agent software 
and management information base (MIB) has that information controlled by another 
machine (its proxy). The proxy communicates with the device being managed. A typical 
example is a printer attached to a workstation. The workstation acts as the printer's 
proxy because the printer has no controlling software with it. 

What four utilities provide the basic TCP/IP troubleshooting information? 

The four utilities most commonly used for troubleshooting a TCP/IP network are ping, 
finger, ruptime, and netstat. 



When would you use the utility traceroute? 

The traceroute utility is used to send UDP datagrams to a target machine, one hop at a 
time. The output from traceroute shows each machine that forwards the message, 
enabling you to follow the route to isolate a problem. 

Quiz

1.  What are the five parts of the OSI Reference Model dealing with network 
management (called the Specific Management Functional Areas)? 

2.  What is a Management Information Base (MIB)? 

3.  What is ping? 

4.  Assume a LAN has some machines using Ethernet and others using IEEE 802.3. Can 
they communicate? 

5.  What is Kerberos? 
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The Socket Programming Interface

Today I look at the last remaining aspect of TCP/IP this course covers: the socket 
interface for programming. This information is intended to convey the process needed to 
integrate an application with TCP/IP and as such involves some basic programming 
functions. It is not necessary to understand programming to understand this 
information. The functions involved in the socket programming interface help you 
understand the steps TCP/IP goes through when creating connections and sending data. 

Understanding the socket interface is helpful even if you never intend to write a line 
of TCP/IP code, because all the applications you will work with use these principles and 
procedures. Debugging or troubleshooting a problem is much easier when you 
understand what is going on behind the user interface. Today I don't attempt to show 



the complete socket interface. Instead I deal only with the primary functions necessary 
to create and maintain a connection. This chapter is not intended to be a programming 
guide, either. 

Because the original socket interface was developed for UNIX systems, today's text has 
a decidedly UNIX-based orientation. However, the same principles apply to most other 
operating systems that support TCP/IP. 

Development of the Socket Programming Interface

TCP/IP is fortunate because it has a well-defined application programming interface 
(API), which dictates how an application uses TCP/IP. This solves a basic problem that has 
occurred on many other communications protocols, which have several approaches to 
the same problem, each incompatible with the other. The TCP/IP API is portable (it works 
across all operating systems and hardware that support TCP/IP), language-independent 
(it doesn't matter which language you use to write the application), and relatively 
uncomplicated. 

The Socket API was developed at the University of California at Berkeley as part of 
their BSD 4.1c UNIX version. Since then the API has been modified and enhanced but 
still retains its BSD flavor. Not to be outdone, AT&T (BSD's rival in the UNIX market) 
introduced the Transport Layer Interface (TLI) for TCP and several other protocols. 
One of the strengths of the Socket API and TLI is that they were not developed 
exclusively for TCP/IP but are intended for use with several communications protocols. 
The Socket interface remains the most widespread API in current use, although several 
newer interfaces are being developed. 

The basic structure of all socket programming commands lies with the unique structure 
of UNIX I/O. With UNIX, both input and output are treated as simple pipelines, where the 
input can be from anything and the output can go anywhere. The UNIX I/O system is 
sometimes referred to as the open-read-write-close system, because those are the steps that 
are performed for each I/O operation, whether it involves a file, a device, or a 
communications port. 

Whenever a file is involved, the UNIX operating system gives the file a file descriptor, a 
small number that uniquely identifies the file. A program can use this file descriptor to 
identify the file at any time. (The same holds true for a device; the process is the same.) 
A file operation uses an open function to return the file descriptor, which is used for 
the read (transfer data to the user's process) or write (transfer data from the user 
process to the file) functions, followed by a close function to terminate the file 
operation. The open function takes a filename as an argument. The read and write 
functions use the file descriptor number, the address of the buffer in which to read or 



write the information, and the number of bytes involved. The close function uses the 
file descriptor. The system is easy to use and simple to work with. 

TCP/IP uses the same idea, relying on numbers to uniquely identify an end point for 
communications (a socket). Whenever the socket number is used, the operating system 
can resolve the socket number to the physical connector. An essential difference 
between a file descriptor and a socket number is that the socket requires some functions 
to be performed prior to the establishment of the socket (such as initialization). In 
techno-speak, "a file descriptor binds to a specific file or device when the open function 
is called, but the socket can be created without binding them to a specific destination at 
all (necessary for UDP), or bind them later (for TCP when the remote address is 
provided)." The same open-read-write-close procedure is used with sockets. 

The process was actually used literally with the first versions of TCP/IP. A special file 
called /dev/tcp was used as the device driver. The complexity added by networking made 
this approach awkward, though, so a library of special functions (the API) was 
developed. The essential steps of open, read, write, and close are still followed in the 
protocol API. 

Socket Services

There are three types of socket interfaces defined in the TCP/IP API. A socket can be 
used for TCP stream communications, in which a connection between two machines is 
created. It can be used for UDP datagram communications, a connectionless method of 
passing information between machines using packets of a predefined format. Or it can be 
used as a raw datagram process, in which the datagrams bypass the TCP/UDP layer and go 
straight to IP. The latter type arises from the fact that the socket API was not 
developed exclusively for TCP/IP. 

The presence of all three types of interfaces can lead to problems with some parameters 
that depend exclusively on the type of interface. You must always bear in mind whether 
TCP or UDP is used. 

There are six basic communications commands that the socket API addresses through the 
TCP layer: 

●     open: Establishes a socket 

●     send: Sends data to the socket 

●     receive: Receives data from a socket 



●     status: Obtains status information about a socket 

●     close: Terminates a connection 

●     abort: Cancels an operation and terminates the connection 

All six operations are logical and used as you would expect. The details for each step 
can be quite involved, but the basic operation remains the same. Many of the functions 
have been seen in previous days when dealing with specific protocols in some detail. Some 
of the functions (such as open) comprise several other functions that are available if 
necessary (such as establishing each end of the connection instead of both ends at once). 

Despite the formal definition of the functions within the API specifications, no formal 
method is given for how to implement them. There are two logical choices: synchronous, 
or blocking, in which the application waits for the command to complete before 
continuing execution; and asynchronous, or nonblocking, in which the application 
continues executing while the API function is processed. In the latter case, a function 
call further in the application's execution can check the API functions' success and 
return codes. 

The problem with the synchronous or blocking method is that the application must wait 
for the function call to complete. If timeouts are involved, this can cause a noticeable 
delay for the user. 

Transmission Control Block

The Transmission Control Block (TCB) is a complex data structure that contains details 
about a connection. The full TCB has over fifty fields in it. The exact layout and 
contents of the TCB are not necessary for today's material, but the existence of the 
TCB and the nature of the information it holds are key to the behavior of the socket 
interface. 

Creating a Socket

The API lets a user create a socket whenever necessary with a simple function call. The 
function requires the family of the protocol to be used with the socket (so the 
operating system knows which type of socket to assign and how to decode information), 
the type of communication required, and the specific protocol. Such a function call is 
written as follows: 



socket(family, type, protocol)

The family of the protocol actually specifies how the addresses are interpreted. 
Examples of families are TCP/IP (coded as AF_INET), Apple's AppleTalk (AF_APPLETALK), 
and UNIX filesystems (AF_UNIX). The exact protocol within the family is specified as the 
protocol parameter. When used, it specifically indicates the type of service that is to be 
used. 

The type parameter indicates the type of communications used. It can be a connectionless 
datagram service (coded as SOCK_DGRAM), a stream delivery service (SOCK_STREAM), 
or a raw type (SOCK_RAW). The result from the function call is an integer that can be 
assigned to a variable for further checking. 

Binding the Socket

Because a socket can be created without any binding to an address, there must be a 
function call to complete this process and establish the full connection. With the 
TCP/IP protocol, the socket function does not supply the local port number, the 
destination port, or the IP address of the destination. The bind function is called to 
establish the local port address for the connection. 

Some applications (especially on a server) want to use a specific port for a connection. 
Other applications are content to let the protocol software assign a port. A specific 
port can be requested in the bind function. If it is available, the software allocates it 
and returns the port information. If the port cannot be allocated (it might be in use), a 
return code indicates an error in port assignment. 

The bind function has the following format: 

bind(socket, local_address, address_length)

socket is the integer number of the socket to which the bind is completed; local_address is 
the local address to which the bind is performed; and address_length is an integer that 
gives the length of the address in bytes. The address is not returned as a simple number 
but has the structure shown in Figure 14.1. 

Figure 14.1. Address structure used by the socket API. 
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The address data structure (which is called usually called sockaddr for socket address) 
has a 16-bit Address Family field that identifies the protocol family of the address. The 
entry in this field determines the format of the address in the following field (which 
might contain other information than the address, depending on how the protocol has 
defined the field). The Address field can be up to 14 bytes in length, although most 
protocols do not need this amount of space. 

The use of a data structure instead of a simple address has 
its roots in the UNIX operating system and the closely allied C 
programming language. The formal structure of the socket 
address enables C programs to use a union of structures for all 
possible address families. This saves a considerable amount of 
coding in applications. 

TCP/IP has a family address of 2, following which the Address field contains both a 
protocol port number (16 bits) and the IP address (32 bits). The remaining eight bytes are 
unused. This is shown in Figure 14.2. Because the address family defines how the Address 
field is decoded, there should be no problem with TCP/IP applications understanding the 
two pieces of information in the Address field. 

Figure 14.2. The address structure for TCP/IP. 

Connecting to the Destination

After a local socket address and port number have been assigned, the destination socket 
can be connected. A one-ended connection is referred to as being in an unconnected state, 
whereas a two-ended (complete) connection is in a connected state. After a bind function, 
an unconnected state exists. To become connected, the destination socket must be added 
to complete the connection. 

Connectionless protocols such as UDP do not require a 
connected state to function. They can, however, be connected 
to enable transfer between the two sockets without having to 
specify the destination address each time. Connection-based 
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protocols such as TCP require both ends of the connection to be 
specified. 

To establish a connection to a remote socket, the connect function is used. The connect 
function's format is 

connect(socket, destination_address, address_length)

The socket is the integer number of the socket to which to connect; the destination_address 
is the socket address data structure for the destination address (using the same format 
as shown in Figure 14.1); and the address_length is the length of the destination address in 
bytes. 

The manner in which connect functions is protocol-dependent. For TCP, connect 
establishes the connection between the two endpoints and returns the information 
about the remote socket to the application. If a connection can't be established, an 
error message is generated. For a connectionless protocol such as UDP, the connect 
function is still necessary but stores only the destination address for the application. 

The open Command

The open command prepares a communications port for communications. This is an 
alternative to the combination of the functions shown previously, used by applications 
for specific purposes. There are really three kinds of open commands, two of which set a 
server to receive incoming requests and the third used by a client to initiate a request. 
With every open command, a TCB is created for that connection. 

The three open commands are an unspecified passive open (which enables a server to wait 
for a connection request from any client), a fully specified passive open (which enables a 
server to wait for a connection request from a specific client), and an active open 
(which initiates a connection with a server). The input and output expected from each 
command are shown in Table 14.1. 

Table 14.1. Open command parameters.

Type Input Output 

Unspecified local port local connection name 



passive open 
Optional: timeout, precedence, 
security, maximum segment size 

local connection name 

Fully specified passive open 

local port, remote IP address, 
remote port Optional: timeout, 
precedence, security, maximum 
segment size 

local connection name 

Active open 

local port, destination IP 
address, destination port 
Optional: timeout, precedence, 
security, maximum segment size 

local connection name 

When an open command is issued by an application, a set of functions within the socket 
interface is executed to set up the TCB, initiate the socket number, and establish 
preliminary values for the variables used in the TCB and the application. 

The passive open command is issued by a server to wait for incoming requests. With the 
TCP (connection-based) protocol, the passive open issues the following function calls: 

●     socket: Creates the sockets and identifies the type of communications. 

●     bind: Establishes the server socket for the connection. 

●     listen: Establishes a client queue. 

●     accept: Waits for incoming connection requests on the socket. 

The active open command is issued by a client. For TCP, it issues two functions: 

●     socket: Creates the socket and identifies the communications type. 

●     connect: Identifies the server's IP address and port; attempts to establish 
communications. 

If the exact port to use is specified as part of the open command, a bind function call 
replaces the connect function. 

Sending Data



There are five functions within the Socket API for sending data through a socket. These 
are send, sendto, sendmsg, write, and writev. Not surprisingly, all these functions send 
data from the application to TCP. They do this through a buffer created by the 
application (for example, it might be a memory address or a character string), passing the 
entire buffer to TCP. The send, write, and writev functions work only with a connected 
socket because they have no provision to specify a destination address within their 
function call. 

The format of the send function is simple. It takes the local socket connection number, 
the buffer address for the message to be sent, the length of the message in bytes, a Push 
flag, and an Urgent flag as parameters. An optional timeout might be specified. Nothing 
is returned as output from the send function. The format is 

send(socket, buffer_address, length, flags)

The sendto and sendmsg functions are similar except they enable an application to send 
a message through an unconnected socket. They both require the destination address as 
part of their function call. The sendmsg function is simpler in format than the sendto 
function, primarily because another data structure is used to hold information. The 
sendmsg function is often used when the format of the sendto function would be 
awkward and inefficient in the application's code. Their formats are 

sendto(socket, buffer_address, length, flags, destination, 
address_length)

sendmsg(socket, message_structure, flags)

The last two parameters in the sendto function are the destination address and the 
length of the destination address. The address is specified using the format shown in 
Figure 14.1. The message_structure of the sendmsg function contains the information left 
out of the sendto function call. The format of the message structure is shown in Figure 
14.3. 

Figure 14.3. The message structure used by sendmsg. 

The fields in the sendmsg message structure give the socket address, size of the socket 
address, a pointer to the iovector, which contains information about the message to be 
sent, the length of the iovector, the destination address, and the length of the 
destination address. 
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The sendmsg function uses the message structure to 
simplify the function call. It also has another advantage: the 
recvmsg function uses the same structure, simplifying an 
application's code. 

The iovector is an address for an array that points to the message to be sent. The array 
is a set of pointers to the bytes that comprise the message. The format of the iovector is 
simple. For each 32-bit address to a memory location with a chunk of the message, a 
corresponding 32-bit field holds the length of the message in that memory location. This 
format is repeated until the entire message is specified. This is shown in Figure 14.4. The 
iovector format enables a noncontiguous message to be sent. In other words, the first 
part of the message can be in one location in memory, and the rest is separated by other 
information. This can be useful because it saves the application from copying long 
messages into a contiguous location. 

Figure 14.4. The iovector format. 

The write function takes three arguments: the socket number, the buffer address of the 
message to be sent, and the length of the message to send. The format of the function 
call is 

write(socket, buffer_address, length)

The writev function is similar to write except it uses the iovector to hold the message. 
This lets it send a message without copying it into another memory address. The format 
of writev is 

writev(socket, iovector, length)

where length is the number of entries in iovector. 

The type of function chosen to send data through a socket depends on the type of 
connection used and the level of complexity of the application. To a considerable 
degree, it is also a personal choice of the programmer. 

Receiving Data
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Not surprisingly, because there are five functions to send data through a socket, there 
are five corresponding functions to receive data: read, readv, recv, recvfrom, and 
recvmsg. They all accept incoming data from a socket into a reception buffer. The 
receive buffer can then be transferred from TCP to the application. 

The read function is the simplest and can be used only when a socket is connected. Its 
format is 

read(socket, buffer, length)

The first parameter is the number of the socket or a file descriptor from which to read 
the data, followed by the memory address in which to store the incoming data, and the 
maximum number of bytes to be read. 

As with writev, the readv command enables incoming messages to be placed in 
noncontiguous memory locations through the use of an iovector. The format of readv is 

readv(socket, iovector, length)

length is the number of entries in the iovector. The format of the iovector is the same as 
mentioned previously and shown in Figure 14.4. 

The recv function also can be used with connected sockets. It has the format 

recv(socket, buffer_address, length, flags)

which corresponds to the send function's arguments. 

The recvfrom and recvmsg functions enable data to be read from an unconnected 
socket. Their formats include the sender's address: 

recvfrom(socket, buffer_address, length, flags, 
source_address, address_length)

recvmsg(socket, message_structure, flags)

The message structure in the recvmsg function corresponds to the structure in sendmsg. 
(See Figure 14.3.) 



Server Listening

A server application that expects clients to call in to it has to create a socket (using 
socket), bind it to a port (with bind), then wait for incoming requests for data. The listen 
function handles problems that could occur with this type of behavior by establishing a 
queue for incoming connection requests. The queue prevents bottlenecks and collisions, 
such as when a new request arrives before a previous one has been completely handled, 
or two requests arrive simultaneously. 

The listen function establishes a buffer to queue incoming requests, thereby avoiding 
losses. The function lets the socket accept incoming connection requests, which are all 
sent to the queue for future processing. The function's format is 

listen(socket, queue_length)

where queue_length is the size of the incoming buffer. If the buffer has room, incoming 
requests for connections are added to the buffer and the application can deal with 
them in the order of reception. If the buffer is full, the connection request is rejected. 

After the server has used listen to set up the incoming connection request queue, the 
accept function is used to actually wait for a connection. The format of the function is 

accept(socket, address, length)

socket is the socket on which to accept requests; address is a pointer to a structure similar 
to Figure 14.1; and length is a pointer to an integer showing the length of the address. 

When a connection request is received, the protocol places the address of the client in 
the memory location indicated by the address parameter, and the length of that address 
in the length location. It then creates a new socket that has the client and server 
connected together, sending back the socket description to the client. The socket on 
which the request was received remains open for other connection requests. This enables 
multiple requests for a connection to be processed, whereas if that socket was closed 
down with each connection request, only one client/server process could be handled at 
a time. 

One possible special occurrence must be handled on UNIX systems. It is possible for a 



single process to wait for a connection request on multiple sockets. This reduces the 
number of processes that monitor sockets, thereby lowering the amount of overhead the 
machine uses. To provide for this type of process, the select function is used. The format 
of the function is 

select(num_desc, in_desc, out_desc, excep_desc, timeout)

num_desc is the number of sockets or descriptors that are monitored; in_desc and out_desc 
are pointers to a bit mask that indicates the sockets or file descriptors to monitor for 
input and output, respectively; excep_desc is a pointer to a bit mask that specifies the 
sockets or file descriptors to check for exception conditions; and timeout is a pointer to 
an integer that indicates how long to wait (a value of 0 indicates forever). To use the 
select function, a server creates all the necessary sockets first, then calls select to 
determine which ones are for input, output, and exceptions. 

Getting Status Information

Several status functions are used to obtain information about a connection. They can 
be used at any time, although they are typically used to establish the integrity of a 
connection in case of problems or to control the behavior of the socket. 

The status functions require the name of the local connection, and they return a set of 
information, which might include the local and remote socket names, local connection 
name, receive and send window states, number of buffers waiting for an 
acknowledgment, number of buffers waiting for data, and current values for the 
urgent state, precedence, security, and timeout variables. Most of this information is 
read from the Transmission Control Block (TCB). The format of the information and the 
exact contents vary slightly, depending on the implementation. 

The function getsockopt enables an application to query the socket for information. 
The function format is 

getsockopt(socket, level, option_id, option_result, length)

socket is the number of the socket; level indicates whether the function refers to the 
socket itself or the protocol that uses it; option_id is a single integer that identifies the 
type of information requested; option_result is a pointer to a memory location where the 
function should place the result of the query; and length is the length of the result. 



The corresponding setsockopt function lets the application set a value for the socket. 
The function's format is the same as getsockopt except that option_result points to the 
value that is to be set, and length is the length of the value. 

Two functions provide information about the local address of a socket. The getpeername 
function returns the address of the remote end. The getsockname function returns the 
local address of a socket. They have the following formats: 

getpeername(socket, destination_address, address_length)

getsockname(socket, local_address, address_length)

The addresses in both functions are pointers to a structure of the format shown in 
Figure 14.1. 

Two host name functions for BSD UNIX are gethostname and sethostname, which enable 
an application to obtain the name of the host and set the host name (if permissions 
allow). Their formats are as follows: 

sethostname(name, length)

gethostname(name, length)

The name is the address of an array that holds the name, and the length is an integer that 
gives the name's length. 

A similar set of functions provides for domain names. The functions setdomainname and 
getdomainname enable an application to obtain or set the domain names. Their formats 
are 

setdomainname(name, length)

getdomainname(name, length)

The parameters are the same as with the sethostname and gethostname functions, except 
for the format of the name (which reflects domain name format). 

Closing a Connection



The close function closes a connection. It requires only the local connection name to 
complete the process. It also takes care of the TCB and releases any variable created by 
the connection. No output is generated. 

The close function is initiated with the call 

close(socket)

where the socket name is required. If an application terminates abnormally, the 
operating system closes all sockets that were open prior to the termination. 

Aborting a Connection

The abort function instructs TCP to discard all data that currently resides in send and 
receive buffers and close the connection. It takes the local connection name as input. 
No output is generated. This function can be used in case of emergency shutdown 
routines, or in case of a fatal failure of the connection or associated software. 

The abort function is usually implemented by the close() call, although some special 
instructions might be available with different implementations. 

UNIX Forks

UNIX has two system calls that can affect sockets: fork and exec. Both are frequently 
used by UNIX developers because of their power. (In fact, forks are one of the most 
powerful tools UNIX offers, and one that most other operating systems lack.) For 
simplicity, I deal with the two functions as though they perform the same task. 

A fork call creates a copy of the existing application as a new process and starts 
executing it. The new process has all the original's file descriptors and socket 
information. This can cause a problem if the application programmer didn't take into 
account the fact that two (or more) processes try to use the same socket (or file) 
simultaneously. Therefore, applications that can fork have to take into account 
potential conflicts and code around them by checking the status of shared sockets. 

The operating system itself keeps a table of each socket and how many processes have 
access to it. An internal counter is incremented or decremented with each process's open 



or close function call for the socket. When the last process using a socket is 
terminated, the socket is permanently closed. This prevents one forked process from 
closing a socket when its original is still using it. 

Summary

Today you have seen the basic functions performed by the socket API during 
establishment of a TCP or UDP call. You have also seen the functions that are 
available to application programmers. Although the treatment has been at a high level, 
you should be able to see that working with sockets is not a complex, confusing task. 
Indeed, socket programming is surprisingly easy once you have tried it. 

Not everyone wants to write TCP or UDP applications, of course. However, 
understanding the basics of the socket API helps in understanding the protocol and 
troubleshooting. If you are interested in programming sockets, one of the best books on 
the subject is UNIX Network Programming, by W. Richard Stevens (Macmillan). 

Q&A

What is the socket interface used for? 

The socket interface enables you to write applications that make optimal use of the 
TCP/IP family of protocols. Without it, you would need another layer of application to 
translate your program's calls to TCP/IP calls. 

What is the difference between blocking and nonblocking functions? 

A blocking function waits for the function to terminate before enabling the 
application to continue. A nonblocking function enables the application to continue 
executing while the function is performed. Both have important uses in applications. 

What does binding do? 

Binding makes a logical connection between a socket and the application. Without it, 
the application couldn't access the socket. 

What happens when an active open command is executed? 



An active open command creates a socket and binds it, then issues a connect call to 
identify the IP address and port. The active open command then tries to establish 
communications. 

What is the difference between an abort and a close operation? 

A close operation closes a connection. An abort abandons whatever communications are 
currently underway and closes the connection. With an abort, any information in 
receive buffers is discarded. 

Quiz

1.  What are the six basic socket commands? 

2.  A Transmission Control Block performs what function? 

3.  What is the difference between an unspecified passive open and a fully specified 
passive open? 

4.  What command displays status information about a socket? 

5.  What is a fork? 

    



   

— Appendix A — 
Acronyms and Abbreviations

Table A.1. Acronyms and Abbreviations and what they mean.

Acronym Explanation 

ACB Access Control Block 

ACK Acknowledgment 

AF Address Family 

ANSI American National Standard Institute 

API Application Programming Interface 

ARP Address Resolution Protocol 

ARPA Advanced Research Projects Agency 

AS Autonomous System 

ASA American Standards Association 

ASCII American National Standard Code for Information Interchange 

ASN.1 Abstract Syntax Notation One 

BBN Bolt, Beranek, and Newman, Incorporated 

BER Basic Encoding Rules 

BGP Border Gateway Protocol 

BSD Berkeley Software Distribution 

CMIP Common Management Information Protocol 

CMIS Common Management Information Services 

CMOT Common Management Information Services and Protocol over TCP/IP 



CRC Cyclic Redundancy Check 

CSMA/CD Carrier Sense Multiple Access with Collision Detection 

DARPA Defense Advanced Research Projects Agency 

DCA Defense Communications Agency 

DCE Distributed Computing Environment 

DCE 
Data Circuit-Terminating Equipment (also called Data Communications 
Equipment) 

DDN Defense Data Network 

DES Data Encryption Standard 

DFS Distributed File Service 

DISA Defense Information Systems Agency 

DIX Digital, Intel, and Xerox Ethernet Protocol 

DME Distributed Management Environment 

DNS Domain Name System 

DSA Directory System Agent 

DSAP Destination Service Access Point 

DTE Data Terminal Equipment 

DUA Directory User Agent 

EBCDIC Extended Binary Coded Decimal Interchange Code 

EGP Exterior Gateway Protocol 

EOF End of File 

EOR End of Record 

FCS Frame Check Sequence 

FDDI Fiber Distributed Data Interface 

FIN Final Segment 

FTAM File Transfer, Access, and Management 

FTP File Transfer Protocol 

GGP Gateway to Gateway Protocol 

GOSIP Government Open Systems Interconnection Profile 



GTF Generalized Trace Facility 

HDLC High-Level Data Link Control Protocol 

IAB Internet Architecture Board 

IAB Internet Activities Board 

IAC Interpret as Command 

IANA Internet Assigned Numbers Authority 

ICMP Internet Control Message Protocol 

ID Identifier 

IEEE Institute of Electrical and Electronic Engineers 

IEN Internet Engineering Notes 

IESG Internet Engineering Steering Group 

IETF Internet Engineering Task Force 

IGMP Internet Group Management Protocol 

IGP Interior Gateway Protocol 

IP Internet Protocol 

IRTF Internet Research Task Force 

ISDN Integrated Services Digital Network 

ISN Initial Sequence Number 

ISO International Organization for Standardization 

ISODE ISO Development Environment 

LAN Local Area Network 

LAPB Link Access Procedures Balanced 

LAPD Link Access Procedures on the D-Channel 

LLC Logical Link Control 

MAC Media Access Control 

MAN Metropolitan Area Network 

MIB Management Information Base 

MSS Maximum Segment Size 

MTA Message Transfer Agent 



MTU Message Transfer Unit 

MTU Maximum Transmission Unit 

MX Mail Exchanger 

NETBIOS Network Basic Input/Output System 

NFS Network File System 

NIC Network Interface Card 

NIS Network Information System 

NREN National Research and Education Network 

NSAP Network Service Access Point 

NSFNET National Science Foundation Network 

NVT Network Virtual Terminal 

OSF Open Software Foundation 

OSI Open Systems Interconnect 

OSPF Open Shortest Path First 

PAD Packet Assembly/Disassembly 

PDU Protocol Data Unit 

PI Protocol Interpreter 

PING Packet Internet Groper 

POP Post Office Protocol 

PPP Point-to-Point Protocol 

RARP Reverse Address Resolution Protocol 

RFC Request For Comment 

RIP Routing Information Protocol 

RMON Remote Network Monitor 

RPC Remote Procedure Call 

RST Reset 

RTT Round Trip Time 

SDLC Synchronous Data Link Communication 

SLIP Serial Line Interface Protocol 



SMDS Switched Multimegabit Data Service 

SMTP Simple Mail Transfer Protocol 

SNA Systems Network Architecture 

SNMP Simple Network Management Protocol 

SONET Synchronous Optical Network 

SPF Shortest Path First 

SSAP Source Service Access Point 

SSCP System Services Control Point 

SYN Synchronizing Segment 

TCB Transmission Control Block 

TCP Transmission Control Protocol 

TCU Trunk Coupling Unit 

TELNET Terminal Networking 

TFTP Trivial File Transfer Protocol 

TLI Transport Layer Interface 

TP4 OSI Transport Class 4 

TSAP Transport Service Access Point 

TTL Time-to-Live 

UA User Agent 

UDP User Datagram Protocol 

ULP Upper Layer Protocol 

WAN Wide Area Network 

XDR External Data Representation 

XNS Xerox Network Systems 

    



   

— Appendix B — 
Glossary

Abstract Syntax Notation One (ASN.1)—An OSI language used to define 
datatypes for networks. It is used within TCP/IP to provide conformance 
with the OSI model. 

Access Control—A process that defines each user's privileges on a system. 

Acknowledgment (ACK)—A positive response returned from a receiver to 
the sender indicating success. TCP uses acknowledgments to indicate the 
successful reception of a packet. 

Active Open—An operation performed by a client to establish a TCP 
connection with a server. 

Address—A memory location in a particular machine's RAM. A numeric 
identifier or symbolic name that specifies the location of a particular 
machine or device on a network, and a means of identifying a complete 
network, subnetwork, or a node within a network. 

Address Mask (also called the subnet mask)—A set of rules for omitting 
parts of a complete IP address in order to reach the target destination 
without using a broadcast message. The mask can, for example, indicate a 
subnetwork portion of a larger network. In TCP/IP, the address mask uses 
the 32-bit IP address. 

Address Resolution—Mapping of an IP address to a machine's physical 
address. TCP/IP uses the Address Resolution Protocol (ARP) for this 
function. 

Address Resolution Protocol (ARP)—See Address Resolution. ARP is a 
protocol used to correlate an IP address to a machine's physical address. The 
reverse operation is performed by Reverse Address Resolution protocol 
(RARP). 



Address Space—A range of memory addresses available to an application 
program. 

Advanced Research Project Agency (ARPA)—DARPA's former name. ARPA 
was an agency funded by the U.S. federal government originally for pure 
research. When it was changed to DARPA the funding became part of the 
Defence budget. 

Agent—In TCP/IP, an agent is an SNMP process that responds to get and set 
requests. Agents can also send trap messages. 

American National Standards Institute (ANSI)—The U.S. body responsible 
for setting standards. 

Application Layer—The highest layer in the OSF model. It establishes 
communications rights and can initiate a connection between two 
applications. 

Application Programming Interface (API)—A set of routines available to 
developers and applications to provide specific services used by the system, 
usually specific to the application's purpose. They act as access methods into 
the application. 

ARPANET (Advanced Research Projects Agency Network)—A packet-
switched network that later became known as the Internet. 

ASCII (American National Standard Code for Information 
Interchange)—An 8-bit character set defining alphanumeric characters. 

Assigned Numbers—Used in Request For Comment (RFC) documents to 
specify values used by TCP/IP. 

Asynchronous—Communications without a regular time basis, enabling 
transmission at unequal rates. 

Autonomous System—A collection of routers that are under the control 
of a single management body. The system usually uses a common Interior 
Gateway Protocol. 

Backbone—A set of nodes and links connected together comprising a 
network, or the upper layer protocols used in a network. Sometimes the 
term is used to refer to a network's physical media. 

Bandwidth—The range of frequencies transmitted on a channel, or the 



difference between the highest and lowest frequencies transmitted across a 
channel. 

Baseband—A type of channel where data transmission is carried across 
only one communications channel, supporting only one signal transmission 
at a time. Ethernet is a baseband system. 

Baseband Signaling—A type of transmission that has a continuous encoded 
signal. Only one node at a time can send data over this type of transmission 
technology. Used in Local Area Networks. 

Basic Encoding Rules (BER)—The rules for encoding datatypes using 
ASN.1. 

Baud—The number of times a signal changes state in one second. 

Berkeley Software Distribution (BSD)—A version of the UNIX operating 
system that first included TCP/IP support. The UNIX operating systems that 
included TCP/IP are referred to as 4.2BSD or 4.3BSD. 

Bit Error Rate (BER)—The number of errors expected in a transmission. 

Bit Rate—The rate that bits are transmitted, usually expressed in seconds. 

BITNET (Because It's Time Network)—An electronic mail network 
connecting over 200 universities. It merged with the CSNET network to 
produce CREN. 

Block Mode—A string of data recorded or transmitted as a unit. Block 
mode transmission is usually used for high speed transmissions and in large, 
high speed networks. 

Border Gateway Protocol (BGP)—A protocol that provides information 
about the devices that can be reached through a router (into an 
autonomous network). BGP is newer than EGP. 

Bridge—A network device capable of connecting networks that use similar 
protocols. 

Broadband (also known as wideband)—A range of frequencies divided into 
several narrower bands. Each band can be used for different purposes. 

Broadband Signaling—The type of signaling used in Local Area Networks 
that enables multiplexing of more than one transmission at a time. 



Broadcast—The simultaneous transmission of the same data to all nodes 
connected to the network. 

Brouter—A network device that is a combination of the functions of a 
bridge and a router. It can function as a bridge while filtering protocols 
and packets destined for nodes on different networks. 

BSD—See Berkeley Software Distribution. 

Buffer—A memory area used for handling input and output. 

Burst Mode—A transmission mode where data is transmitted in bursts 
rather than in continuous streams. 

Bus—In network topology, a linear configuration. Also used to refer to 
part of the electronic layout of network devices. 

Cache—A memory location that keeps frequently requested material 
ready. Usually the cache is faster than a storage device. It is used to speed 
data and instruction transfer. 

Carrier Sense—A signal generated by the physical network layer to 
inform the data link layer that one or more nodes are transmitting on the 
network medium. 

Carrier Sense Multiple Access with Collision Detection (CSMA/CD)—A 
network media access control protocol wherein a device listens to the 
medium to monitor traffic. If there is no signal, the device is allowed to 
send data. 

Cheapernet—A reduced-cost Ethernet variant where the maximum length 
of the network is 200 feet. It uses inexpensive 75-ohm coaxial cable, simple 
connectors, and no transceivers. 

Client—A program that tries to connect to another program (usually on 
another machine) called a server. The client calls the server. The server 
listens for calls. 

Client/Server Architecture—A catch-all term used to refer to a 
distributed environment where one program can initiate a session and 
another program can answer its requests. The origin of client/server designs 
is closely allied with the TCP/IP protocol suite. 

CMOT—The TCP/IP implementation of CMIP. 



Collision—An event that occurs when two or more nodes broadcast 
packets at the same time—the packets collide. 

Collision Detection—A device's capability to detect whether a collision 
has occurred. 

Common Management Information Protocol (CMIP)—A network 
management protocol usually associated with OSI. When used with TCP/IP, 
CMIP is called CMOT. 

Common Management Information Service (CMIS)—Management services 
provided by CMIP. 

Connection—A link between two or more processes, applications, machines, 
network, and so forth. Connections can be logical, physical, or both. 

Connection Oriented—A type of network service where the transport 
layer protocol sends acknowledgments to the sender regarding incoming 
data. This type of service usually provides for retransmission of corrupted 
or lost data. 

Connectionless—A type of network service that does not send 
acknowledgments to the sender upon receipt of data. UDP is a 
connectionless protocol. 

Consortium for Research and Education Network (CREN)—The name for 
the body arising from the combination of CSNET and BITNET. 

Contention—A condition occurring in some LANs where the Media Access 
Control (MAC) sublayer allows more than one node to transmit at the same 
time, risking collisions. 

CMIP—See Common Management Information Protocol. 

CMOT—The TCP/IP implementation of CMIP. 

Core Gateway—A router operated by the Internet Network Operations 
Center to distribute routing information. 

Crosstalk—Signals that interfere with another signal. 

CSNET (Computer Science Network)—An electronic mail network that 
merged with BITNET to form CREN. 



Cyclic Redundancy Check (CRC)—A mathematical function performed on 
the contents of an entity that is then included to enable a receiving system 
to recalculate the value and compare to the original. If the values are 
different, corruption of the contents has occurred. 

Daemon—A UNIX process that operates continuously and unattended to 
perform a service. TCP/IP uses several daemons to establish communications 
processes and provide server facilities. 

DARPA (Defense Advanced Research Project Agency)—The 
governmental body that created the DARPANET for widespread 
communications. DARPANET eventually became the Internet. 

Data Circuit-Terminating Equipment (D CE)—Required equipment to 
attach Data Terminal Equipment (DTE) to a network or serial line. A modem 
is a DCE device. Also called Data Communications Equipment and Data 
Circuit Equipment. 

Data Encryption Standard (DES)—An encryption standard officially 
sanctioned in the U.S. 

Data Link—The part of a node controlled by a data link protocol. It is the 
logical connection between two nodes. 

Data Link Protocol (DLP)—A method of handling the establishment, 
maintenance, and termination of a logical link between nodes. Ethernet is 
one example of a Data Link Protocol. 

Data Terminal Equipment (DTE)—The source or destination of data, 
usually attached to a network by DCE devices. A terminal or computer 
acting as a node on a network is usually a DTE device. 

Datagram—A basic unit of data used with TCP/IP. 

Defense Communications Agency (DCA)—The governmental agency 
responsible for the Defense Data Network (DDN). 

Defense Data Network (DDN)—Refers to military networks such as 
MILNET and ARPANET and the communications protocols (including TCP/IP) 
that they employ. 

Destination Address—The destination device's address. 

Directory System Agent (DSA)—A program that accepts queries from a 



directory user agent (DUA). 

Directory User Agent (DUA)—A program that helps a user to send a query 
to a directory server. 

Distributed Computing Environment (DCE)—A set of technologies 
developed by the Open Software Foundation (0SF) supporting distributed 
computing. 

Distributed File Service (DFS)—An Open Software Foundation (OSF) 
fileserver technology sometimes used with TCP/IP. 

Distributed Management Environment (DME)—A system and network 
management technology developed by the Open Software Foundation (OSF). 

Distributed Processing—When a process is spread over two or more 
devices, it is distributed. It is usually used to spread CPU loads among a 
network of machines. 

Domain Name System (DNS)—A service that converts symbolic node names 
to IP addresses. DNS is frequently used with TCP/IP. DNS uses a distributed 
database. 

Dotted Decimal Notation—A representation of IP addresses. Also called 
"dotted quad notation" because it uses four sets of numbers separated by 
decimals (for example, 255.255.255.255). 

Double Byte Character Set—A character set where alphanumeric 
characters are represented by two bytes, instead of one byte as with ASCII. 
Double byte characters are often necessary for Asian languages, which 
have more than 255 symbols. 

Drop Cable—In Ethernet networks it refers to the cable connecting the 
device to the network, sometimes through a transceiver. 

Dumb Terminal—A terminal with no significant processing capability of its 
own, usually with no graphics capabilities beyond the ASCII set. 

Emulation—A program that simulates another device. For example, a 3270 
emulator emulates an IBM 3270 terminal, sending the same codes as the real 
device would. 

Encapsulation—Including an incoming message into a larger message by 
adding information at the front, back, or both. Encapsulation is used by 



layered network protocols. With each layer, new headers and trailers are 
added. 

Enterprise Network—A generic term usually referring to a Wide Area 
Network providing services to all of a corporation's sites. 

Ethernet—A data link level protocol comprising the OSI model's bottom 
two layers. It is a broadcast networking technology that can use several 
different physical media, including twisted pair cable and coaxial cable. 
Ethernet usually uses CSMA/CD. TCP/IP is commonly used with Ethernet 
networks. 

Ethernet Address—A 48-bit address commonly referred to as a physical or 
hard address that uniquely identifies the Ethernet Network Interface Card 
(NIC) and hence the device the card resides in. 

Ethernet Meltdown—A slang term for a situation where an Ethernet 
network becomes saturated. The condition usually persists for only a short 
time and is usually caused by a misrouted or invalid packet. 

Extended Binary Coded Decimal Interchange Code (EBCDIC)—An 
alternative to ASCII used extensively in IBM machinery. Some other 
vendors use it for mainframes. EBCDIC and ASCII are not compatible but are 
easy to convert between. 

Exterior Gateway Protocol (EGP)—A protocol used by gateways to 
transfer information about devices that can be reached within their 
autonomous systems. 

Fiber Distributed Data Interface (FDDI)—An ANSI-defined standard for 
high speed data transfer over fiber optic cabling. 

File Server—A process that provides access to a file from remote devices. 
Also used to refer to the physical server itself, although the term server 
also implies other services than file provision in most client/server 
networks. 

File Transfer Access Method (FTAM)—A file transfer program and 
protocol developed by OSI. It includes some basic management functions. 

File Transfer Protocol (FTP)—A TCP/IP application used for transferring 
files from one system to another. 

Fragmentation—The breaking of a datagram into several smaller pieces, 
usually because the original datagram was too large for the network or 



software. 

Frame—Usually refers to the completed Ethernet packet, which includes 
the original data and all the TCP/IP layers' headers and trailers (including 
the Ethernet's). 

Frame Check Sequence (FCS)—A mathematical function used to verify the 
integrity of bits in a frame, similar to the Cyclic Redundancy Check (CRC). 

Frame Relay—A network switching mechanism for routing frames as 
quickly as possible. 

Gateway—In Internet terms, a gateway is a device that routes datagrams. 
More recently used to refer to any networking device that translates 
protocols of one type network into those of another network. 

Gateway-to-Gateway Protocol (GGP)—A protocol used to exchange 
routing information between core routers. 

Gigabyte—One billion bytes, corresponding to decimal 1,073,741,824 (a 
kilobyte is 1,024 decimal). 

Government Open System Interconnection Profile (GOSIP)—A 
government standard that uses the OSI reference model. 

Hardware Address—The low-level address associated with each device on 
a network, usually corresponding to the unique identifier of the network 
interface card (NIC). Ethernet addresses are 48 bits. 

High Level Data Link Control (HDLC)—An international data 
communication standard. 

Hop Count—The number of bridges that data crosses in a Token Ring 
network. 

IEEE 802.2—An IEEE-approved data link standard used with the 802.3, 802.4, 
and 802.5 protocol standards. 

IEEE 802.3—An IEEE-approved physical layer standard that uses CSMA/CD 
on a bus network topology. 

IEEE 802.4—An IEEE-approved physical layer standard that uses token 
passing on a bus network topology. 



IEEE 802.5—An IEEE-approved physical layer standard that uses token 
passing on a ring network topology. 

Initial Sequence Number (ISN)—A number defined during the startup of a 
connection using TCP. Used to number datagrams. 

Initiate—In TCP/IP, to send a request for something (usually a connection). 

Institute of Electrical and Electronic Engineers (IEEE)—A 
professional organization for engineers that also proposes and approves 
standards. 

Integrated Service Digital Network (ISDN)—A set of standards for 
integrating multiple services (voice, data, video, and so on). 

Interface—A shared point between two software applications or two 
hardware devices. 

Interior Gateway Protocol (IGP)—A protocol used by gateways in an 
autonomous system to transfer routing information. 

International Organization for Standardization (ISO)—An 
international body composed of individual countries' standards groups that 
focuses on international standards. 

Internet—A collection of networks connected together that span the 
world that uses the NFSNET as its backbone. The Internet is the specific 
term for a more general internetwork or collection of networks. 

Internet Activities Board (IAB)—The Internet group that coordinates 
the development of the TCP/IP protocol suite. 

Internet Address—A 32-bit address used to identify hosts and networks on 
the Internet. 

Internet Control Message Protocol (ICMP)—A control and error 
message protocol that works in conjunction with the Internet Protocol 
(IP). 

Internet Engineering Notes (IEN)—Documents that discuss TCP/IP, 
available through the Network Information Center (NIC). 

Internet Engineering Steering Group (IESG)—The executive party of the 
IETF. 



Internet Engineering Task Force (IETF)—Part of the IAB responsible for 
short-term engineering needs relating to the TCP/IP protocol suite. 

Internet Protocol (IP)—The part of TCP/IP that handles routing. 

Internet Research Task Force (IRTF)—A part of the IAB that 
concentrates on research and development of the TCP/IP protocol suite. 

IP Address—A 32-bit identifier that is unique to each network device. 

IP Datagram—The basic unit of information passed through a TCP/IP 
network. The datagram header contains source and destination IP addresses. 

IS-IS (Intermediate System to Intermediate System Protocol)—A 
routing protocol that performs routing functions with IP and OSI data. 

ISO Reference Model—The seven-layer ISO networking model. It isolates 
specific functions within each layer. 

ISODE (ISO Development Environment)—An attempt to develop software 
that enables OSI protocols to run on TCP/IP. 

Jam—An Ethernet term for communicating with all devices on a network 
on which a collision has occurred. 

Jitter—A term used with 10BaseT (twisted-pair Ethernet) networks where 
signals are out of phase with one another. 

Kerberos—An authentication scheme developed at MIT used to prevent 
unauthorized monitoring of logins and passwords. 

LAN (Local Area Network)—A collection of devices connected to enable 
communications between themselves on a single physical medium. 

Learning Bridge—A network bridge device that has the function of a 
bridge and the capability to monitor the network in order to determine 
which nodes are connected to it, and adjust routing data accordingly. 

Leased Line—A dedicated communication line between two points. Usually 
used by organizations to connect computers over a dedicated telephone 
circuit. 

Link—A generic term referring to a connection between two end points. 



Logical—Conveys an abstract concept in a simpler manner, such as using a 
logical machine name instead of its physical address. 

Logical Link Control (LLC)—The upper part of the data link sublayer 
protocol that is responsible for governing the exchange of data between 
two end points. 

Mail Exchanger—A system used to relay mail into a network. 

Management Information Base (MIB)—A database used by SNMP 
containing configuration and statistical information about devices on a 
network. 

Maximum Segment Size—The maximum permissible size for the data part of a 
packet. 

Maximum Transmission Unit (MTU)—The largest datagram that can be 
handled by a specific network. The MTU can change over different 
networks, even if the transport is the same (such as Ethernet). 

Media Access Control (MAC)—The lower half of the data link sublayer 
that is responsible for framing data and controlling the physical link 
between two end points. 

Medium Access Unit (MAU)—A MAU handles the connection of a device 
operating on a network. 

Message Transfer Agent (MTA)—A process that moves messages between 
devices. 

Metropolitan Area Network (MAN)—An IEEE-approved network that 
supports high speeds over a metropolitan area. 

MILNET (Military Network)—A network that was originally part of 
ARPANET, now designated for exclusive military use in installations that 
require reliable network services. 

Modem (Modulator-Demodulator)—A device that converts digital 
signals into analog signals and vice versa. Used for conversion of signals 
for transmission over telephone lines. 

Modem Eliminator—A device that functions as two modems to provide 
service for data terminal equipment (DTE) and data communications 
equipment (DCE). 



Multihomed Host—A device attached to two or more networks. 

Multiplex—Simultaneously transmitting multiple signals over one 
channel. 

Name Resolution—The process of mapping aliases to an address. The Domain 
Name System (DNS) is one system that does this. 

National Institute of Standards and Technology (NIST)—A U.S. 
standards body previously called the National Bureau of Standards that 
promotes communications-oriented standards. 

National Research and Education Network (NREN)—A network 
backbone supporting large capacities planned for future Internet use. 

National Science Foundation Network (NFSNET)—The network that acts 
as part of the Internet backbone. 

NetBIOS (Network Basic Input/Output Operating System)—A network 
programming interface typically used to connect PCs together. 

Network—A number of devices connected to enable the device to 
communicate with any other device over a physical medium. 

Network Address—For TCP/IP, the 32-bit IP address of a device. 

Network File System (NFS)—A protocol developed by Sun MicroSystems 
that enables clients to mount remote directories onto their own local 
filesystem. 

Network Information Center (NIC)—The Internet administration facility 
that controls the naming of networks accessible over the Internet. 

Network Information Service (NIS)—A set of protocols developed by Sun 
Microsystems used to provide directory services for network information. 

Network Interface Card (NIC)—A generic term for a networking 
interface board used to connect a device to the network. The NIC is where 
the physical connection to the network occurs. 

Network Management—Any aspect of monitoring or controlling a 
network, including all administration details. 

Network Service Access Point—Used to identify an OSI device and point 



to the transport layer. 

Network Virtual Terminal (NVT)—Protocols that govern virtual 
terminal emulation. 

Node—A generic term used to refer to network devices. 

Open Shortest Path First (OSPF)—The basic Internet routing protocol for 
sending data over multiple paths. It uses the network's topology for 
routing decisions. 

Open Software Foundation (OSF)—A consortium of hardware and 
software vendors collaborating to produce technologies for device-
independent operation. 

Open Systems Interconnection (OSI)—A family of ISO-developed standards 
relating to data communications. 

Optical Fiber—A plastic or glass cable that uses light as a communications 
medium. 

Packet—In TCP/IP, a term referring to the data passing between the 
internet layer and the data link layer. Also a generic term used to refer to 
data transferred through a network. 

Passive Open—An action taken by a server daemon to prepare it to receive 
requests from clients. 

PING (Packet Internet Groper)—A utility program used to test a system's 
TCP/IP software by sending an ICMP echo request and then waiting for a 
response. 

Point-to-Point—Transmission directly between two points without any 
intervening devices. 

Point-to-Point Protocol (PPP)—A TCP/IP protocol that provides host-to-
network and router-to-router connections. Can be used to provide a serial 
line connection between two machines. 

Port—A number used to identify TCP/IP applications. Generally a port is an 
entry or exit point. 

Protocol—Rules governing the behavior or method of operation of 
something. 



Protocol Conversion—The process of changing one protocol to another. 

Protocol Data Unit (PDU)—A term used in TCP/IP to refer to a unit of 
data, headers, and trailers at any layer in a network. 

Protocol Interpreter (PI)—A process that carries out FTP functions. FTP 
uses one Protocol Interpreter for the server and another one for the user. 

Proxy—A mechanism whereby one system functions for another when 
responding to protocol requests. 

Push Service—A service provided by TCP to enable an application to specify 
when data must be transmitted as soon as possible. 

RARP—See Reverse Address Resolution Protocol. 

Receive Window—A range of sequence numbers that a sender can transmit 
at a given time. 

Remote Network Monitor (RMON)—A device (such as a workstation) that 
collects and maintains information about network traffic. 

Remote Procedure Call (RPC)—A TCP/IP protocol that provides a routine 
which calls a server that returns output and status (return) codes to the 
client. 

Repeater—A network device that boosts the power of incoming signals to 
enable the length of a network to be extended. 

Requests for Comment (RFCs)—Documents containing specifications for 
TCP/IP protocols. RFCs are also used to propose new protocols. RFCs are 
available from the Network Information Center (NIC). 

Resolver—Software that enables clients to access the Domain Name 
System (DNS) database and acquire an address. 

Resource—Usually refers to application programs, but also used generally 
to refer to system capabilities such as memory, networks, and so on. 

Retransmission Timeout—Occurs when data has been sent to a destination 
but no acknowledgment has been received when a timer has expired. When a 
retransmission timeout occurs, the protocol usually resends the data. 

Reverse Address Resolution Protocol (RARP)—A TCP/IP protocol that 



enables a device to acquire its IP address by performing a broadcast on the 
network. 

RIP (Routing Information Protocol)—A TCP/IP protocol used to exchange 
information about routing. Usually used when only a small number of 
computers are in use. 

rlogin—Remote login service that enables a user on one machine to log in 
as a user on another. It is similar to Telnet. 

Round Trip Time—The time for a TCP segment to be sent and its 
acknowledgment received. 

Router—A device that connects LANs into an internetwork and routes 
traffic between them. 

Routing—The process of determining a path to use to send data to its 
destination. 

Routing Information Protocol (RIP)—A protocol used to exchange 
information between routers. 

Routing Table—A list of valid paths through which data can be 
transmitted. 

RS232C—A physical layer specification for connecting devices. Commonly 
used for serial lines. 

SAP (Service Access Point)—The location at which two applications can 
exchange information. 

Segment—A protocol data unit (PDU) that consists of a TCP header and 
(optional) data. Also used to refer to parts of a network that is divided into 
smaller parts (segments). 

Send Window—A range of sequence numbers that can be received. 

Sequence Number—A 32-bit field in the IP header that identifies the 
datagram. 

Serial—A sequence of events occurring one after another. 

Serial Line Internet Protocol (SLIP)—A protocol used to utilize TCP/IP 
over serial lines. 



Server—An application that answers requests from other devices (clients). 
Also used as a generic term for any device that provides services to the rest 
of the network, such as printing, high-capacity storage, and network access. 

Simple Mail Transfer Protocol (SMTP)—In TCP/IP, an application 
providing electronic mail services. 

Socket—In TCP/IP, an addressable point that consists of an IP address and a 
TCP or UDP port number that provides applications with access to TCP/IP 
protocols. 

Socket Address—The complete designation of a TCP/IP node consisting of a 
32-bit IP address and a 16-bit port number. 

Socket Descriptor—An integer used by an application to identify the 
connection. 

Source—The originating device. 

Source Routing—A routing method determined by the source device. 

Subnet—In TCP/IP, part of a TCP/IP network identified by a portion of the 
Internet address. 

Subnet Address—The part of the IP address that identifies the subnetwork. 

Subnet Mask—A set of bits that excludes networks from having a system-
wide broadcast, instead restricting the broadcast to a subnetwork. 

Switched Connection—A data link connection that is established on 
demand (like a telephone call). 

SYN—A segment used in the start of a TCP connection to enable both 
devices to exchange information defining characteristics about the session. 
It is also used to synchronize the target and destination devices. 

Synchronous Data Transfer—The transfer of data between two nodes at 
a timed rate (as opposed to asynchronously). 

Telnet—A TCP/IP application that enables a user to log in to a remote 
device. 

TCP/IP—Transmission Control Protocol/Internet Protocol. 



10Base2—An Ethernet term meaning a maximum transfer rate of 10 
Megabits per second that uses baseband signaling, with a contiguous cable 
segment length of 100 meters and a maximum of 2 segments. 

10Base5—An Ethernet term meaning a maximum transfer rate of 10 
Megabits per second that uses baseband signaling, with 5 continuous 
segments not exceeding 100 meters per segment. 

lOBaseT—An Ethernet term meaning a maximum transfer rate of 10 
Megabits per second that uses baseband signaling and twisted pair cabling. 

Terminal Server—A network device that provides physical access for dumb 
terminals, usually using an abbreviated TCP/IP protocol to enable a dumb 
terminal to remotely log on. 

Terminator—A resistor that must be on both ends of thick and thin 
Ethernet networks. 

Throughput—The amount of data that can be transferred through a 
medium within a certain time period. 

Time-to-Live (TTL)—The amount of time a datagram can remain on the 
internetwork. It is usually specified as the number of hops to permit. 

Token Ring—A lower layer connection-based networking protocol using a 
token passing method to control data traffic. 

Topology—The configuration of network devices. 

Traffic—A general term used to describe the amount of data on a network 
backbone. 

Transceiver—A network device required in baseband networks that takes 
a digital signal and puts it on the analog baseband medium. Transceivers can 
sense collisions. 

Transmission Class 4—An OSI transport layer protocol similar to TCP. 
Often referred to as OSI TP4. 

Transmission Control Block (TCB)—A data structure that holds 
information about TCP and UDP connections. 

Transmission Control Protocol (TCP)—A transport layer protocol that 
is part of the TCP/IP protocol suite and provides a connection-based, 



reliable data stream. 

Trivial File Transfer Protocol (TFTP)—A mechanism for remote logons 
similar to Telnet but that uses UDP as a transport layer protocol instead 
of TCP. 

UDP (User Datagram Protocol)—A connectionless transport layer 
protocol. It does not perform retransmission of data. 

User Agent—An electronic mail program that helps end users manage 
messages. 

User Service—A service provided by TCP permitting an application to 
specify that data being transmitted is urgent and should be processed as 
soon as possible. 

Well Known Port—In TCP/IP, an address for an agreed upon purpose. 

Wide Area Network (WAN)—Usually used to refer to a network spanning 
large geographic distances. 

X.400—A protocol defining standards for electronic mail in an open 
network. 

X.500—A protocol defining standards for directory services in an open 
network. 

X Series—A collection of widely accepted standards, including data 
communications. 

X Windows—A software protocol developed at MIT for a distributed 
windowing system. X uses TCP for a transport protocol. 

XNS (Xerox Networking Standard)—Networking protocols 
developed by Xerox, similar to TCP/IP. 

    



   

— Appendix C — 
Commands

The commands associated with the TCP/IP utilities mentioned in this book are summarized 
in the following list. Refer to the Index for their occurrences throughout the text. 

arp View or update the Address Resolution Protocol tables 

finger View the list of users logged on the network 

ftp Invoke the file transfer protocol program 

ifconfig View or configure network interface parameters 

mount 
Mount a directory or filesystem onto the local file structure, or view a 
list of mounted directories or filesystems 

netstat Display network statistics 

nfsstat View statistics on NFS usage and configuration 

nslookup 
Look up IP addresses and associated information through a Domain Name 
Server 

ping Send an ICMP echo message to a remote system to test connectivity 

rlogin Log in to a remote host 

rpcinfo Display information about active processes 

ruptime Display the total time a system has been functioning and its current load 

showmount View all servers currently mounted 

spray 
Send a batch of UDP datagrams to a remote system to check connectivity 
and throughput 

telnet Log in to a remote host 

traceroute Display messages from routers along the path of a set of test datagrams 



ypcat Display the contents of a Network Information Service database 

ypmatch Look up an entry in a Network Information Service database 

    



   

— Appendix D — 
Well-Known Port Numbers

Both TCP and UDP use well-known ports, also known as service contact ports. The port 
names reflect the specific TCP and UDP applications. Ports are the end points of a 
connection, providing a convenient method for accessing and addressing the connection 
end. 

The following list does not include all TCP and UDP ports, but it does include all those 
you are likely to encounter. The rest are assigned for historical or experimental 
reasons. 

Port Name Description 

1 TCPMUX TCP Port Service Multiplexer 

5 RJE Remote Job Entry 

7 ECHO Echo 

9 DISCARD Discard 

11 USERS Active Users 

13 DAYTIME Daytime 

17 Quote Quote of the Day 

19 CHARGEN Character Generator 

20 FTP-DATA File Transfer (Data Channel) 

21 FTP File Transfer (Control Channel) 

23 TELNET TELNET 

25 SMTP Simple Mail Transfer 

27 NSW-FE NSW User System FE 

29 MSG-ICP MSG-ICP 



31 MSG-AUTH MSG Authentication 

33 DSP Display Support Protocol 

35 Private Printer Server 

37 TIME Time 

39 RLP Resource Location Protocol 

41 GRAPHICS Graphics 

42 NAMESERVER Host Name Server 

43 NICNAME Who Is 

49 LOGIN Login Host Protocol 

53 DOMAIN Domain Name Server 

67 BOOTPS Bootstrap Protocol Server 

68 BOOTPC Bootstrap Protocol Client 

69 TFTP Trivial File Transfer Protocol 

79 FINGER Finger 

101 HOSTNAMENIC Host Name Server 

102 ISO-TSAP ISO TSAP 

103 X400 X.400 

104 X400SND X.400 SND 

105 CSNET-NSCSNET Mailbox Name Server 

109 POP2 Post Office Protocol v2 

110 POP3 Post Office Protocol v3 

111 SUNRPC SUN RPC Portmap 

137 NETBIOS-NS NETBIOS Name Service 

138 NETBIOS-DGMNET BIOS Datagram Service 

139 NETBIOS-SSNNET BIOS Session Service 

146 ISO-TP0 ISO TP0 

147 ISO-IP ISO IP 

150 SQL-NET SQL-NET 

153 SGMP SGMP 



156 SQLSRV SQL Service 

160 SGMP-TRAP5 SGMP TRAPS 

161 SNMP SNMP 

162 SNMPTRAP SNMPTRAP 

163 CMIP-MANAGE CMIP/TCP Manager 

164 CMIP-AGENT CMIP/TCP Agent 

165 XNS-COURIER Xerox Network 

179 BGP Border Gateway Protocol 
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— Appendix E — 
RFCs

Most of the information about the TCP/IP protocol family is published as Requests For 
Comments (RFCs). RFCs define the various aspects of the protocol, its use, and 
management as a set of loosely coordinated notes. 

The RFCs contain a lot of useless information (mostly because it is system-specific or 
considerably outdated), but they also contain a wealth of detail for those who want to 



take TCP/IP to its limits. Unexpectedly, there is quite a bit of interesting and humorous 
reading in the RFCs, including several classic works such as "'Twas the Night Before 
Start-up" (RFC 968), "ARPAWOCKY" (RFC 527), and "Telnet Randomly—Lose Option" 
(RFC 748). 

This appendix lists the important (or, as just mentioned, interesting or humorous) RFCs 
that readers might want to refer to. Instructions for accessing the RFCs are also 
included. This list is not complete. Where possible, old and outdated RFCs have been 
dropped from the list. However, thinning the list of RFCs is a time-consuming process, 
involving reading each of the documents in turn. Because there are almost 1,500 RFCs, I 
have relied on other users' comments, notes from the NIC, and other reference works for 
a suitable pruning. 

Accessing RFCs

RFCs can be obtained in several ways, the easiest of which is electronically. Paper copies 
are available upon request. Electronic copies are usually in ASCII format, although 
some are in PostScript format and require a PostScript interpreter to print them. Most 
RFCs obtained electronically do not have diagrams, figures, or pictures. 

Accessing RFCs Through FTP

RFCs can be obtained using FTP through the Internet Network Information Center 
(NIC). Use FTP to access the NIC archive NIC.DDN.MIL. Use the user name guest and the 
password anonymous. RFCs can then be retrieved by using the FTP get command with the 
following format: 

<RFC>RFC527.txt

Replace the RFC527 portion with the number of the RFC required. You can FTP into the 
NIC archive only if you have access to a machine with Internet access. 

Accessing RFCs Through E-Mail



RFCs can be requested through electronic mail. Both the NIC and the NFSNET Network 
Service Center provide automated responses, returning the requested RFC. Both services 
read incoming electronic mail for keywords that indicate which RFC is required as well 
as the sender's e-mail address, then send back the RFC requested. 

To obtain an RFC from the NIC, send a message with the subject field set to the RFC you 
want. Mail it to service@nic.ddn.mil. If you want more information on obtaining 
information through the NIC e-mail system, send mail with the word help as the subject. 

To obtain RFCs from the NFSNET Network Service Center, send a message with the first 
two lines like this: 

REQUEST: RFC

TOPIC: 527

The first line specifies that you want an RFC, and the second line gives the RFC number. 
Send the mail to info-server@sh.cs.net. For more information, set the topic to help. 

Accessing Printed Copies of RFCs

If you do not have access to electronic communications, you can request a preprinted 
copy of an RFC. To obtain a printed copy of any RFC, call the Network Information 
Center at 1-800-235-3155. 

It is considered bad manners to make the NIC staff wait while you find which RFCs you 
want. Make a list of them first, so your telephone conversation is short and succinct. 
They must answer many calls a day and are usually quite busy. 

Useful RFCs Sorted by Category

Following are categorized lists of available RFCs. 

General Information

mailto:service@nic.ddn.mil
mailto:server@sh.cs.net


RFC1360 "IAB Official Protocol Standards," Postel, J.B.; 1992 

RFC1340 "Assigned Numbers," Reynolds, J.K.; Postel, J.B.; 1992 

RFC1208 "Glossary of Networking Terms," Jacobsen, O.J.; Lynch, D.C.; 1991 

RFC1180 "TCP/IP Tutorial," Socolofsky, T.J.; Kale, C.J.; 1991 

RFC1178 "Choosing a Name for Your Computer," Libes, D.; 1990 

RFC1175 
"FYI on Where to Start: A Bibliography of Inter-networking Information," 
Bowers, K.L.; LaQuey, T.L.; Reynolds, J.K.; Reubicek, K.; Stahl, M.K.; Yuan, 
A.; 1990 

RFC1173 
"Responsibilities of Host and Network Managers: A Summary of the Oral 
Tradition of the Internet," vanBokkelen, J.; 1990 

RFC1166 "Internet Numbers," Kirkpatrick, S.; Stahl, M.K.; Recker, M.; 1990 

RFC1127 "Perspective on the Host Requirements RFCs," Braden, R.T.; 1989 

RFC1123 
"Requirements for Internet Hosts—Application and Support," Braden, R.T., 
ed; 1989 

RFC1122 
"Requirements for Internet Hosts—Communication Layers," Braden, R.T., ed; 
1989 

RFC1118 "Hitchhiker's Guide to the Internet," Krol, E., 1989 

RFC1011 "Official Internet Protocol," Reynolds, J.R.; Postel, J.B.; 1987 

RFC1009 "Requirements for Internet Gateways," Braden, R.T.; Postel, J.B.; 1987 

RFC980 "Protocol Document Order Information," Jacobsen, O.J.; Postel, J.B.; 1986 

TCP and UDP

RFC1072 "TCP Extensions for Long-Delay Paths," Jacobson, V.; Braden, R.T.; 1988 

RFC896 "Congestion Control in IP/TCP Internetworks," Nagle, J.; 1984 

RFC879 "TCP Maximum Segment Size and Related Topics," Postel, J.B.; 1983 

RFC813 "Window and Acknowledgment Strategy in TCP," Clark, D.D.; 1982 

RFC793 "Transmission Control Protocol," Postel, J.B.; 1981 

RFC768 "User Datagram Protocol," Postel, J.B.; 1980 



IP and ICMP

RFC1219 "On the Assignment of Subnet Numbers," Tsuchiya, P.F.; 1991 

RFC1112 "Host Extensions for IP Multicasting," Deering, S.E.; 1989 

RFC1088 
"Standard for the Transmission of IP Datagrams over NetBIOS Networks," 
McLaughlin, L.J.; 1989 

RFC950 "Internet Standard Subnetting Procedure," Mogul, J.C.; Postel, J.B.; 1985 

RFC932 "Subnetwork Addressing Schema," Clark, D.D.; 1985 

RFC922 
"Broadcasting Internet Datagrams in the Presence of Subnets," Mogul, J.C.; 
1984 

RFC9l9 "Broadcasting Internet Datagrams," Mogul, J.C.; 1984 

RFC886 "Proposed Standard for Message Header Munging," Rose, M.T.; 1983 

RFC815 "IP Datagram Reassembly Algorithms," Clark, D.D.; 1982 

RFC814 "Names, Addresses, Ports, and Routes," Clark, D.D.; 1982 

RFC792 "Internet Control Message Protocol," Postel, J.B.; 1981 

RFC791 "Internet Protocol," Postel, J.B.; 1981 

RFC781 "Specification of the Internet Protocol (IP) Timestamp Option," Su, Z.; 1981 

Lower Layers

RFC1236 "IP to X.121 Address Mapping for DDN," Morales, L.F. Jr.; 1991 

RFC1220 "Point-to-Point Protocol Extensions for Bridging," Baker, F., ed.; 1991 

RFC1209 
"Transmission of IP Datagrams over the SMDS Service," Piscitello, D.M.; 
Lawrence, J.; 1991 

RFC1201 "Transmitting IP Traffic over ARCNET Networks," Provan, D.; 1991 

RFC1188 
"Proposed Standard for the Transmission of IP Datagrams over FDDI 
Networks," Katz, D.; 1990 



RFC1172 
"Point-to-Point Protocol Initial Configuration Options," Perkins, D.; Hobby, 
R.; 1990 

RFC1171 
"Point-to-Point Protocol for the Transmission of Multiprotocol Datagrams 
over Point-to-Point Links," Perkins, D.; 1990 

RFC1149 
"Standard for the Transmission of IP Datagrams on Avian Carriers," 
Waitzman, D.; 1990 

RFC1055 
"Nonstandard for Transmission of IP Datagrams over Serial Lines: SLIP," 
Romkey, J.L.; 1988 

RFC1044 
"Internet Protocol on Network System's HYPERchannel: Protocol 
Specification," Hardwick, K.; Lekashman, J.; 1988 

RFC1042 
"Standard for the Transmission of IP Datagrams over IEEE 802 Networks," 
Postel, J.B.; Reynolds, J.K.; 1988 

RFC1027 
"Using ARP to Implement Transparent Subnet Gateways," Carl-Mitchell, S.; 
Quarterman, J.S.; 1987 

RFC903 
"Reverse Address Resolution Protocol," Finlayson, R.; Mann, T.; Mogul, J.C.; 
Theimer, M.; 1984 

RFC895 
"Standard for the Transmission of IP Datagrams over Experimental Ethernet 
Networks," Postel, J.B.; 1984 

RFC894 
"Standard for the Transmission of IP Datagrams over Ethernet Networks," 
Hornig, C.; 1984 

RFC893 "Trailer Encapsulations," Leffler, S.; Karels, M.J.; 1984 

RFC877 
"Standard for the Transmission of IP Datagrams over Public Data 
Networks," Korb, J.T.; 1983 

Bootstrapping

RFC1084 "BOOTP Vendor Information Extensions," Reynolds, J.K.; 1988 

RFC951 "Bootstrap Protocol," Croft, W.J.; Gilmore, J.; 1985 

RFC906 "Bootstrap Loading Using TFTP," Finlayson, R.; 1984 

Domain Name System



RFC1101 "DNS Encoding of Network Names and Other Types," Mockapetris, P.V.; 1989 

RFC1035 "Domain Names—Implementation and Specification," Mockapetris, P.V.; 1987 

RFC1034 "Domain Names—Concepts and Facilities," Mockapetris, P.V.; 1987 

RFC1033 "Domain Administrators Operations Guide," Lottor, M.; 1987 

RFC1032 "Domain Administrators Guide," Stahl, M.K.; 1987 

RFC974 "Mail Routing and the Domain System," Partridge, C.; 1986 

RFC920 "Domain Requirements," Postel, J.B.; Reynolds, J.K.; 1984 

RFC799 "Internet Name Domains," Mills, D.L.; 1981 

File Transfer and File Access

RFC1094 
"NFS: Network File System Protocol Specification," Sun Microsystems, Inc.; 
1989 

RFC1068 
"Background File Transfer Program (BFTP)," DeSchon, A.L.; Braden, R. T.; 
1988 

RFC959 "File Transfer Protocol," Postel, J.B.; Reynolds, J.K.; 1985 

RFC949 "FTP Unique-Named Store Command," Padlipsky, M.A.; 1985 

RFC783 "TFTP Protocol (Revision 2)," Sollins, K.R.; 1981 

RFC775 
"Directory Oriented FTP Commands," Mankins, D.; Franklin, D.; Owen, A.D.; 
1980 

Mail

RFC1341 
"MIME (Multipurpose Internet Mail Extensions) Mechanisms for Specifying 
and Describing the Format of Internet Message Bodies," Borenstein, N.; 
Freed, N.; 1992 

RFC1143 "Q Method of Implementing Telnet Option Negotiation," Bernstein, D.J.; 1990 

RFC1090 "SMTP on X.25," Ullmann, R.; 1989 



RFC1056 
"PCMAIL: A Distributed Mail System for Personal Computers," Lambert, 
M.L.; 1988 

RFC974 "Mail Routing and the Domain System," Partridge, C.; 1986 

RFC822 
"Standard for the Format of ARPA Internet Text Messages," Crocker, D.; 
1982 

RFC821 "Simple Mail Transfer Protocol," Postel, J.B.; 1982 

Routing Protocols

RFC1267 "A BORDER Gateway Protocol 3 (BGP-3)," Lougheed, K.; Rekhter, Y.; 1991 

RFC1247 "OSPF version 2," Moy, J.; 1991 

RFC1222 
"Advancing the NSFNET Routing Architecture," Braun, H.W.; Rekhter, Y.; 
1991 

RFC1195 
"Use of OSI IS-IS for Routing in TCP/IP and Dual Environments," Callon, 
R.W.; 1990 

RFC1164 
"Application of the BORDER Gateway Protocol in the Internet," Honig, J.C.; 
Katz, D.; Mathis, M.; Rekhter, Y.; Yu, J.Y.; 1990 

RFC1163 "Border Gateway Protocol (BGP)," Lougheed, K.; Rekhter, Y.; 1990 

RFC1136 
"Administrative Domains and Routing Domains: A Model for Routing in the 
Internet," Hares, S.; Katz, D.; 1989 

RFC1074 "NSFNET Backbone SPF-Based Interior Gateway Protocol," Rekhter, J.; 1988 

RFC1058 "Routing Information Protocol," Hedrick, C.L.; 1988 

RFC911 "EGP Gateway under Berkeley UNIX 4.2," Kirton, P.; 1984 

RFC904 "Exterior Gateway Protocol Formal Specification," Mills, D.L.; 1984 

RFC888 "STUB Exterior Gateway Protocol," Seamonson, L.; Rosen, E.C.; 1984 

RFC827 "Exterior Gateway Protocol (EGP)," Rosen, E.C.; 1982 

RFC823 "DARPA Internet Gateway," Hinden, R.M.; Sheltzer, A.; 1982 

Routing Performance and Policy



RFC1254 
"Gateway Congestion Control Survey," Mankin, A.; Ramakrishnan, K.K, eds.; 
1991 

RFC1246 "Experience with the OSPF Protocol," Moy, J., ed.; 1991 

RFC1245 "OSPF Protocol Analysis," Moy, J., ed; 1991 

RFC1125 
"Policy Requirements for Inter-Administrative Domain Routing," Estrin, D.; 
1989 

RFC1124 "Policy Issues in Interconnecting Networks," Leiner, B.M.; 1989 

RFC1104 "Models of Policy-Based Routing," Braun, H.W.; 1989 

RFC1102 "Policy Routing in Internet Protocols," Clark, D.D.; 1989 

Terminal Access

RFC1205 "Telnet 5250 Interface," Chmielewski, P.; 1991 

RFC1198 "FYI on the X Window System," Scheifler, R.W.; 1991 

RFC1184 "Telnet Linemode Option," Borman, D.A., ed.; 1990 

RFC1091 "Telnet Terminal-Type Option," VanBokkelen, J.; 1989 

RFC1080 "Telnet Remote Flow Control Option," Hedrick, C.L.; 1988 

RFC1079 "Telnet Terminal Speed Option," Hedrick, C.L.; 1988 

RFC1073 "Telnet Window Size Option," Waitzman, D.; 1988 

RFC1053 "Telnet X.3 PAD Option," Levy, S.; Jacobson, T.; 1988 

RFC1043 
"Telnet Data Entry Terminal Option: DODIIS Implementation," Yasuda, A.; 
Thompson, T.; 1988 

RFC1041 "Telnet 3270 Regime Option," Rekhter, Y.; 1988 

RFC1013 "X Window System Protocol, version 11: Alpha Update," Scheifler, R.W.; 1987 

RFC946 "Telnet Terminal Location Number Option," Nedved, R.; 1985 

RFC933 "Output Marking Telnet Option," Silverman, S.; 1985 

RFC885 "Telnet End of Record Option," Postel, J.B.; 1983 

RFC861 "Telnet Extended Options: List Option," Postel, J.B; Reynolds, J.K.; 1983 



RFC860 "Telnet Timing Mark Option," Postel, J.B.; Reynolds, J.K.; 1983 

RFC859 "Telnet Status Option," Postel, J.B.; Reynolds, J.K.; 1983 

RFC858 "Telnet Suppress Go Ahead Option," Postel, J.B,; Reynolds, J.K.; 1983 

RFC857 "Telnet Echo Option," Postel, J.B.; Reynolds, J.K.; 1983 

RFC856 "Telnet Binary Transmission," Postel, J.B.; Reynolds, J.K.; 1983 

RFC855 "Telnet Option Specifications," Postel, J.B.; Reynolds, J.K.; 1983 

RFC854 "Telnet Protocol Specification," Postel, J.B.; Reynolds, J.K.; 1983 

RFC779 "Telnet Send-Location Option," Killian, E.; 1981 

RFC749 "Telnet SUPDUP-Output Option," Greenberg, B.; 1978 

RFC736 "Telnet SUPDUP Option," Crispin, M.R; 1977 

RFC732 "Telnet Data Entry Terminal Option," Day, J.D.; 1977 

RFC727 "Telnet Logout Option," Crispin, M.R.; 1977 

RFC726 
"Remote Controlled Transmission and Echoing Telnet Option," Postel, J.B.; 
Crocker, D.; 1977 

RFC698 "Telnet Extended ASCII Option," Mock, T.; 1975 

Other Applications

RFC1196 "Finger User Information Protocol," Zimmerman. D.P.; 1990 

RFC1179 "Line Printer Daemon Protocol," McLaughlin, L.; 1990 

RFC1129 
"Internet Time Synchronization: The Network Time Protocol," Mills, D.L.; 
1989 

RFC1119 
"Network Time Protocol (version 2) Specification and Implementation," 
Mills, D.L.; 1989 

RFC1057 
"RPC: Remote Procedure Call Protocol Specification: Version 2," Sun 
Microsystems, Inc.; 1988 

RFC1014 
"XDR: External Data Representation Standard," Sun Microsystems, Inc.; 
1987 

RFC954 "NICNAME/WHOIS," Harrenstien, K.; Stahl, M.K.; Feinler, E.J.; 1985 

RFC868 "Time Protocol," Postel, J.B.; Harrenstien, K.; 1983 



RFC867 "Daytime Protocol," Postel, J.B.; 1983 

RFC866 "Active Users," Postel, J.B.; 1983 

RFC8G5 "Quote of the Day Protocol," Postel, J.B.; 1983 

RFC8G4 "Character Generator Protocol," Postel, J.B.; 1983 

RFC863 "Discard Protocol," Postel, J.B.; 1983 

RFC862 "Echo Protocol," Postel, J.B.; 1983 

Network Management

RFC1271 
"Remote Network Monitoring Management Information Base," Waldbusser, 
S.; 1991 

RFC1253 "OSPE version 2: Management Information Base," Baker, P.; Coltun, R.; 1991 

RFC1243 "Appletalk Management Information Base," 1991 

RFC1239 "Reassignment of Experimental MIBs to Standard MIBs," Reynolds, J.K.; 1991 

RFC1238 
"CLNS MIB for Use with Connectionless Network Protocol (ISO 8473) and 
End System to Intermediate System (ISO 9542)," Satz, G.; 1991 

RFC1233 
"Definitions of Managed Objects for the DS3 Interface Type," Cox, T.A.; 
Tesink, K., eds.; 1991 

RFC1232 
"Definitions of Managed Objects for the DS1 Interface Type," Baker, F.; 
Kolb, C.P., eds.; 1991 

RFC1231 "IEEE 802.5 Token Ring MIB," McCloghrie, K.; Fox, R.; Decker, E.; 1991 

RFC1230 "IEEE 802.4 Token Bus MIB," McCloghrie, K.; Fox R.; 1991 

RFC1229 "Extensions to the Generic-Interface MIB," McCloghrie, K., ed.; 1991 

RFC1228 
"SNMP-DPI: Simple Network Management Protocol Distributed Program 
Interface," Carpenter, G.; Wijnen, B.; 1991 

RFC1227 "SNMP MUX protocol and MIB," Rose, M.T.; 1991 

RFC1224 
"Techniques for Managing Asynchronously Generated Alerts," Steinberg, 
L.; 1991 

RFC1215 "Convention for Defining Traps for Use with the SNMP," Rose, M.T., ed.; 1991 



RFC1214 
"OSI Internet Management: Management Information Base," LaBarre, L., ed.; 
1991 

RFC1213 
"Management Information Base for Network Management of TCP/IP-based 
Internets: MiB-II," McCloghrie, K.; Rose, M.T., eds.; 1991 

RFC1212 "Concise MIB Definitions," Rose, M.T.; McCloghrie, K., eds.; 1991 

RFC1187 
"Bulk Table Retrieval with the SNMP," Rose, M.T.; McCloghrie, K.; Davin, 
J.R.; 1990 

RFC1157 
"Simple Network Management Protocol (SNMP)," Case, J.D.; Fedor, M.; 
Schoffstall, M.L.; Davin, C.; 1990 

RFC1156 
"Management Information Base for Network Management of TCP/IP-based 
Internets," McCloghrie, K.; Rose, M.T.; 1990 

RFC1155 
"Structure and Identification of Management Information for TCP/IP-Based 
Internets," Rose, M.T.; McCloghrie, K.; 1990 

RFC1147 
"FYI on a Network Management Tool Catalog: Tools for Monitoring and 
Debugging TCP/IP Internets and Interconnected Devices," Stine, R.H., ed.; 
1990 

RFC1089 
"SNMP over Ethernet," Schoffstall, M.L.; Davin, C.; Fedor, M.; Case, J.D.; 
1989 

Tunneling

RFC1241 "Scheme for an Internet Encapsulation Protocol: Version 1," 1991 

RFC1234 "Tunneling IPX Traffic through IP Networks," Provan, D.; 1991 

RFC1088 
"Standard for the Transmission of IP Datagrams over NetBIOS Networks," 
McLaughlin, L.J.; 1989 

RFC1002 
"Protocol Standard for a NetBIOS Service on a TCP/UDP Transport: 
Detailed Specifications," NetBIOS Working Group; 1987 

RFC1001 
"Protocol Standard for a NetBIOS Service on a TCP/UDP Transport: 
Concepts and Methods," NetBIOS Working Group; 1987 

OSI



RFC1240 
"OSI Connectionless Transport Services on Top of UDP: Version 1," Shue, C.; 
Haggerty, W.; Dobbins, K.; 1991 

RFC1237 
"Guidelines for OSI NSAP Allocation in the Internet," Gollela, R.; Gardner, 
E.P.; Callon, R.W.; 1991 

RFC1169 "Explaining the Role of GOSIP," Cerf, V.G.; Mills, K.L.; 1990 

Security

RFC1244 "Site Security Handbook" 

RFC1115 
"Privacy Enhancement for Internet Electronic Mail: Part III—Algorithms, 
Modes, and Identifiers [Draft]," Linn, J.; 1989 

RFC1114 
"Privacy Enhancement for Internet Electronic Mail: Part II—Certificate-
Based Key Management [Draft]," Kent, S.T.; Linn, J.; 1989 

RFC1113 
"Privacy Enhancement for Internet Electronic Mail: Part I—Message 
Encipherment and Authentication Procedures [Draft]," Linn, J.; 1989 

RFC1108 "Security Options for the Internet Protocol," 1991 

Miscellaneous

RFC1251 
"Who's Who in the Internet: Biographies of IAB, IESG, and IRSG Members," 
Malkin, G.S.; 1991 

RFC1207 
"FYI on Questions and Answers: Answers to Commonly Asked 'Experienced 
Internet User' Questions," Malkin, G.S.; Marine, A.N.; Reynolds, J.K.; 1991 

RFC1206 
"FYI on Questions and Answers: Answers to Commonly Asked 'New Internet 
User' Questions," Malkin, G.S.; Marine, A.N.; 1991 
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— Appendix F — 
Answers to Quizzes

Chapter 2

1.  Draw the layered architectures of both the OSI Reference Model and TCP/IP. 
Show how the layers correspond in each diagram. 

The layered architecture of both the OSI-RM and TCP/IP are shown in Figure 2.2. 

2.  Show the layered Internet architecture, explaining each layer's purpose. 

The layers of the Internet architecture are shown in Figure 2.5. 

3.  Show how a datagram is transferred from one network, through one or more 
gateways, to the destination network. In each device, show the layered 
architecture and how high up the layered structure the datagrams goes. 
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This process is shown in Figure 2.6. 

4.  Draw the IP header and an Ethernet frame, showing the number of bits used for 
each component. Explain each component's role. 

The IP header and Ethernet frame structure is shown in Figure 2.8. The text in 
that section explain the role of each component. 

5.  Explain what an ARP Cache is. What is its structure and why is it used? 

The ARP cache is used to hold IP addresses and physical addresses The layout of an ARP 
cache is shown in Figure 2.10. Each row corresponds to one device, with four pieces of 
information for each device. 

Chapter 3

1.  Explain why IP is important to the proper transmission of data. 

IP's primary task is the addressing of datagrams. Without IP, routing information 
would have to be constructed at a higher layer in the architecture. 

2.  Show the construction of the IP header and the meaning of each element within 
the header structure. 

The IP header is shown in Figure 3.1. The meaning of each field within the header is 
explained in the text accompanying the figure. 

3.  ICMP headers are quite small. Show the structure of a typical message header and 
the meaning of the bits within it. 

The ICMP header is shown in Figure 3.4. The meaning of each field and their valid 
values are explained in the accompanying text. 

4.  Explain the different EGP message formats and when they are used. 

There are four EGP message formats in use: neighbor acquisition and neighbor 
reachability (both of which indicate the presence and status of neighbor devices); 
poll (to verify that a neighbor is active); and error (for reporting error 
conditions). 

5.  Show the EGP message format, explaining the contents of the header and the 
network reachability information. 



The format of the EGP message headers is shown in Figures 3.6 and 3.7. The text 
accompanying the figures explains the meaning of the fields within the header. 

Chapter 4

1.  Draw a diagram showing the binding of port tables when three machines are 
sending information to each other. 

This is shown in Figure 4.3. 

2.  Draw the TCP protocol data unit (PDU) and explain the meaning of each field. 

The TCP PDU is shown in Figure 4.5. The fields are all explained in the 
accompanying text. 

3.  Use a diagram to show the signals involved with two machines establishing a TCP 
connection. Then, show how data is transferred. Finally, show the termination 
process. 

The diagrams for all three steps are shown in Figures 4.6, 4.7, and 4.8. 

4.  What is a TCP connection table? How is it used? 

TCP uses a connection table to keep track of all the active connections. Each 
existing connection has an entry in the table that shows information about the 
end-to-end connection. The layout of the TCP connection table is shown in Figure 
4.9. 

5.  Draw the UDP header and explain the fields it contains. 

The UDP header is shown in Figure 4.10. The accompanying text explains the 
purpose of each field. 

6.  What are the advantages of using UDP over TCP? When would you not want to 
use UDP? 

UDP is connectionless, hence a little faster. It is not as reliable as TCP, though, 
so is not useful for applications when a connection must be maintained for long 
periods or when reliability of transfer is important. 



Chapter 5

1.  Explain what a network virtual terminal is. 

A network virtual terminal (NVT) is used to define both ends of a connection. It 
has a logical keyboard and a logical printer (display). NVTs are necessary to 
allow a connection to exist. 

2.  Draw diagrams showing two- and three-party FTP sessions, indicating the port 
numbers used by each machine. 

These diagrams are shown in Figures 5.4 and 5.5. 

3.  Why would you want to enable anonymous FTP access? Are there any reasons for 
disallowing it? 

Anonymous FTP access enables users to upload and download files to your system 
without having to log in. This can be useful when you want to share information 
without worrying about user IDs. Anonymous FTP should be disabled if you do not 
plan to share information globally, because there are several possible security 
concerns with a poorly administered anonymous FTP setup. 

4.  TFTP enables files to be transferred without logging in. What problems can this 
cause? 

TFTP's capability to transfer files without a login can enable a remote user to 
transfer a file to or from your system without your specific knowledge, as long as 
the security system and file permissions are set to enable this. A well-run system 
controls TFTP's access considerably. 

5.  What are the Berkeley Utilities? 

The Berkeley Utilities are a set of useful utility programs developed for TCP/IP 
at the University of California at Berkeley. The tools are known as the Berkeley 
Utilities in honor of their developers. 

Chapter 7

1.  Define the role of gateways, routers, bridges, and brouters. 



A gateway performs routing functions between networks and can translate 
protocols. A bridge connects two or more networks using the same protocol. A 
router is a network device that forwards datagrams around the network. A 
brouter performs the functions of both the bridge and the router. 

2.  What is a packet-switched network? 

A packet-switched network is one where all transfers of information are based on 
self-contained packets (like TCP/IP's datagrams). 

3.  What is the difference between interior and exterior neighbor gateways? 

Interior gateways connect LANs of one organization, whereas exterior gateways 
connect the organization to the outside world. 

4.  What are the advantages and disadvantages of the three types of routing tables? 

The three types of routing tables are fixed, dynamic, and fixed central. The fixed 
table must be manually modified every time there is a change. A dynamic table 
changes its information based on network traffic, reducing the amount of manual 
maintenance. A fixed central table lets a manager modify only one table, which is 
then read by other devices. The fixed central table reduces the need to update 
each machine's table, as with the fixed table. Usually a dynamic table causes the 
fewest problems for a network administrator, although the table's contents can 
change without the administrator being aware of the change. 

5.  What is the HELLO protocol used for? 

The HELLO protocol uses time instead of distance to determine optimal routing. It 
is an alternative to the Routing Information Protocol. 

Chapter 8

1.  What protocol is used by DNS name servers? Why is that a good choice? 

DNS uses UDP for communication between servers. It is a better choice than TCP 
because of the improved speed a connectionless protocol offers. Of course, 
transmission reliability suffers with UDP. 

2.  What is a DNS resource record? 



A resource record is an entry in a name server's database. There are several types 
of resource records used, including name-to-address resolution information. 
Resource records are maintained as ASCII files. 

3.  Show a sample entry in an IN-ADDR-ARPA file and explain what the fields mean. 

An entry in an IN-ADDR-ARPA file would look like this: 

merlin IN A 143.12.2.46 

The line contains the machine name, the class of machine (IN means Internet), A to 
show it is an address resource record, and the IP address. 

4.  BOOTP helps a diskless workstation boot. How does it get a message to the 
network looking for its IP address and the location of its operating system boot 
files? 

BOOTP sends a UDP message with a subnetwork broadcast address and waits for a 
reply from a server that gives it the IP address. The same message might contain 
the name of the machine that has the boot files on it. If the boot image location is 
not specified, the workstation sends another UDP message to query the server. 

5.  What is the Network Time Protocol? Why is it used? 

The Network Time Protocol is designed specifically to ensure that all internal 
timers are synchronized and have similar settings. 

Chapter 9

1.  Show how the NFS layers compare to the OSI Reference Model. 

This is shown in Figure 9.1. The NFS layers comprise the top three layers of the 
architecture, including the application layer protocols (mount, yp, and so forth), 
XDR (External Data Representation) in place of the presentation layer, and RPC 
(Remote Procedure Call) in place of the session layer. 

2.  Explain how a port mapper assigns ports. 

The port mapper controls assignment of ports based on requests from applications. 
The port mapper maintains a table of ports and the RPC programs that are using 
them. When the port mapper receives a request for a port, it checks for an 
available port, then completes a table entry for the port and application, 



returning the port number with a status message. 

3.  What is External Data Representation? 

External Data Representation is a method of encoding data within an RPC 
message, used to ensure that the data is not system-dependent. 

4.  What does the Mount protocol do? 

The Mount protocol returns a file handle and the name of the file system in 
which a requested file resides. The message is sent to the client from the server 
after reception of a client's request. 

5.  What is REX? What advantage does REX offer other similar utilities? 

The Remote Execution Service (REX) is designed to enable users to run commands 
on other machines without logging in and without the overhead of larger 
utilities like Telnet. Because REX preserves the full shell environment, it is 
better than other remote procedures. 

Chapter 10

1.  What components make up a Medium Attachment Unit (MAU) and what are their 
roles? 

The MAU is composed of the Physical Medium Attachment (PMA) and the Medium 
Dependent Interface (MDI). The MAU manages the connection of the machine to 
the network medium itself. 

2.  What is FDDI? Why is it popular? 

FDDI is Fiber Distributed Data Interface, popular because it provides very high 
transmission speeds over a fiber optic cable. 

3.  What is the role of the Discard service? 

The Discard service discards everything it receives, returning nothing back to the 
sender. 

4.  The Time protocol is often used by network devices. What is its role? 

The Time protocol is used to synchronize devices on a network so their clocks are 
consistent. If they were not consistent, some packet information involving actual 



times would be meaningless. 

5.  Does the presence of a second network protocol (like IPX) affect the basic TCP/IP 
protocol suite's operations? 

TCP/IP can function over other network protocols (like IPX) by replacing parts of 
the TCP/IP layered architecture with the other network protocol's layers. Some 
duplication and crossover of functionality can be expected, but TCP/IP can 
function properly with many different networks. 

Chapter 11

1.  How many devices are enabled on a Class B network (the most common)? 

Class B networks use two bytes for the device portion of the IP address. This 
enables 65,534 different devices. 

2.  What is the difference between the BSD UNIX TCP/IP broadcast address setting 
and the one normally used? 

The BSD UNIX TCP/IP broadcast address uses all 0s, whereas the Internet 
standard (and most other TCP/IP implementations) uses all 1s. The Internet system 
is the most widely used except in locations that have run BSD UNIX for many 
years and have not made the switch. 

3.  What is a pseudo tty? 

A pseudo tty or false terminal enables external machines to connect through 
Telnet or rlogin. Without a pseudo tty, no connection can take place. 

4.  What does the following .rhosts file do? 

# .rhosts 
artemis tparker 
artemis goof 
artemis aarmenakis 
mig rmaclean 

This file enables three users from the system artemis and one user from the system 
mig to log in to the host system without using passwords. The user IDs that can be 
used are specified after the machine name. 



5.  What is anonymous FTP and why would you use it? 

Anonymous FTP enables users to connect to a host without using a valid login 
and password. Usually, anonymous FTP uses a login called anonymous or guest, 
with the password usually requesting the user's ID for tracking purposes only. 
Anonymous FTP is used to enable a large number of users to access files on the 
host without having to go to the trouble of setting up logins for them all. 
Anonymous FTP systems usually have strict controls over the areas an 
anonymous user can access. 

Chapter 13

1.  What are the five parts of the OSI Reference Model dealing with network 
management (called the Specific Management Functional Areas)? 

The OSI-RM defines the five aspects of network management as accounting, 
configuration, faults, performance, and security. 

2.  What is a Management Information Base (MIB)? 

A Management Information Base is part of every SNMP-managed device. Each 
SNMP agent has the MIB database that contains information about the device's 
status, its performance, connections, and configuration. The MIB is queried by 
SNMP. 

3.  What is ping? 

Ping is the Packet Internet Groper. It sends out an ICMP request to a destination 
and waits for a response. Ping is a simple utility used to check connectivity. 

4.  Assume a LAN has some machines using Ethernet and others using IEEE 802.3. Can 
they communicate? 

Not unless there is a translation system in place. The datagrams for Ethernet and 
IEEE 802.3 are slightly different. This is a common problem because most users 
think that IEEE 802.3 is Ethernet. 

5.  What is Kerberos? 

Kerberos is a network security system developed at MIT. It provides encryption 
and validation services that are very difficult to break. 



Chapter 14

1.  What are the six basic socket commands? 

The basic socket commands are open, send, receive, status, close, and abort. 

2.  A Transmission Control Block performs what function? 

A TCB is a complex data structure that contains a considerable amount of 
information about a connection. There is a TCB for each connection. 

3.  What is the difference between an unspecified passive open and a fully specified 
passive open? 

An unspecified passive open has the server waiting for a connection request from a 
client. A fully specified passive open has the server waiting for a connection from 
a specific client. 

4.  What command displays status information about a socket? 

The command getsockopt queries a socket and displays all information returned 
about the socket. 

5.  What is a fork? 

A fork is a UNIX process that creates a copy of the existing application, then 
executes it. 
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